The Minding formula and its applications

被引:0
|
作者
Yi Fang
机构
[1] Centre for Mathematics and its Applications,
[2] School of Mathematical Sciences,undefined
[3] The Australian National University,undefined
[4] Canberra,undefined
[5] ACT 0200,undefined
[6] Australia,undefined
来源
Archiv der Mathematik | 1999年 / 72卷
关键词
Free Surface; Riemannian Manifold; Minimal Surface; Branch Point; Curvature Surface;
D O I
暂无
中图分类号
学科分类号
摘要
We apply the Minding Formula for geodesic curvature and the Gauss-Bonnet Formula to calculate the total Gaussian curvature of certain 2-dimensional open complete branched Riemannian manifolds, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cal M$\end{document} surfaces. We prove that for an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cal M$\end{document} surface, the total curvature depends only on its Euler characteristic and the local behaviour of its metric at ends and branch points. Then we check that many important surfaces, such as complete minimal surfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\Bbb R}^n$\end{document} with finite total curvature, complete constant mean curvature surfaces in hyperbolic 3-space H3 (–1) with finite total curvature, are actually branch point free \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cal M$\end{document} surfaces. Therefore as corollaries we give simple proofs of some classical theorems such as the Chern-Osserman theorem for complete minimal surfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\Bbb R}^n$\end{document} with finite total curvature. For the reader's convenience, we also derive the Minding Formula.
引用
收藏
页码:473 / 480
页数:7
相关论文
共 50 条
  • [31] An extended Lie-Trotter formula and its applications
    Ahn, Eunkyung
    Kim, Sejung
    Lim, Yongdo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 427 (2-3) : 190 - 196
  • [32] Hobson's formula for Dunkl operators and its applications
    Shimeno, Nobukazu
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (11) : 842 - 851
  • [33] Integral formula and its applications to the problem and the extension problem
    Adachi, K
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 437 - 444
  • [34] A formula with its applications on the difference of Zagreb indices of graphs
    Xu, Kexiang
    Gao, Fang
    Das, Kinkar Chandra
    Trinajstic, Nenad
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 57 (06) : 1618 - 1626
  • [35] An explicit formula for generalized potential polynomials and its applications
    Cenkci, Mehmet
    DISCRETE MATHEMATICS, 2009, 309 (06) : 1498 - 1510
  • [36] The Leibniz formula for the covariant derivative and some of its applications
    Gavrilov A.V.
    Siberian Advances in Mathematics, 2012, 22 (2) : 80 - 94
  • [37] Structural formula process neural networks and its applications
    Xu, Shaohua
    He, Xingui
    Wang, Bing
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2006, 43 (12): : 2088 - 2095
  • [38] A new reciprocity formula of Dedekind sums and its applications
    Chen, Zhuoyu
    Zhang, Wenpeng
    AIMS MATHEMATICS, 2024, 9 (05): : 12814 - 12824
  • [39] On a general formula in the theory tchebycheff polynomials and its applications
    Shohat, J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1927, 29 (1-4) : 569 - 583
  • [40] TRACE FORMULA FOR POLYNOMIAL OPERATOR PENCILS AND ITS APPLICATIONS
    BOIMATOV, KK
    KOSTYUCHENKO, AG
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1991, 25 (04) : 306 - 308