The Minding formula and its applications

被引:0
|
作者
Yi Fang
机构
[1] Centre for Mathematics and its Applications,
[2] School of Mathematical Sciences,undefined
[3] The Australian National University,undefined
[4] Canberra,undefined
[5] ACT 0200,undefined
[6] Australia,undefined
来源
Archiv der Mathematik | 1999年 / 72卷
关键词
Free Surface; Riemannian Manifold; Minimal Surface; Branch Point; Curvature Surface;
D O I
暂无
中图分类号
学科分类号
摘要
We apply the Minding Formula for geodesic curvature and the Gauss-Bonnet Formula to calculate the total Gaussian curvature of certain 2-dimensional open complete branched Riemannian manifolds, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cal M$\end{document} surfaces. We prove that for an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cal M$\end{document} surface, the total curvature depends only on its Euler characteristic and the local behaviour of its metric at ends and branch points. Then we check that many important surfaces, such as complete minimal surfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\Bbb R}^n$\end{document} with finite total curvature, complete constant mean curvature surfaces in hyperbolic 3-space H3 (–1) with finite total curvature, are actually branch point free \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cal M$\end{document} surfaces. Therefore as corollaries we give simple proofs of some classical theorems such as the Chern-Osserman theorem for complete minimal surfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\Bbb R}^n$\end{document} with finite total curvature. For the reader's convenience, we also derive the Minding Formula.
引用
收藏
页码:473 / 480
页数:7
相关论文
共 50 条
  • [1] The Minding formula and its applications
    Fang, Y
    ARCHIV DER MATHEMATIK, 1999, 72 (06) : 473 - 480
  • [2] A Formula for the Logarithmic Derivative and Its Applications
    Mashreghi, Javad
    HILBERT SPACES OF ANALYTIC FUNCTIONS, 2010, 51 : 197 - 201
  • [3] ON A FORMULA FOR THE nTH DERIVATIVE AND ITS APPLICATIONS
    Culjak, Vera
    Jovanovic, Mirko S.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (01): : 211 - 216
  • [4] REMARKS ON THE CARTAN FORMULA AND ITS APPLICATIONS
    Liu, Kefeng
    Rao, Sheng
    ASIAN JOURNAL OF MATHEMATICS, 2012, 16 (01) : 157 - 169
  • [5] On a formula for the spectral flow and its applications
    Benevieri, Pierluigi
    Piccione, Paolo
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (05) : 659 - 685
  • [6] Homothetic Cayley Formula and its Applications
    Doğan Ünal
    Mehmet Ali Güngör
    Murat Tosun
    Advances in Applied Clifford Algebras, 2016, 26 : 809 - 824
  • [7] Homothetic Cayley Formula and its Applications
    Unal, Dogan
    Gungor, Mehmet Ali
    Tosun, Murat
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (02) : 809 - 824
  • [8] A LAURENT SERIES EXPANSION FORMULA AND ITS APPLICATIONS
    RAINA, RK
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1984, 93 (01): : 59 - 62
  • [9] A representation formula and its applications to singular integrals
    Calderon, AP
    Calderon, CP
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2000, 49 (01) : 1 - 5
  • [10] A generalization of Clairaut's formula and its applications
    Koval, Vadym
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 548 (02)