We show how the classical polylogarithm function Lis(z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textrm{Li}_s(z)$$\end{document} and its relatives, the Hurwitz zeta function and the Lerch function are all of a spectral nature, and can explain many properties of the complex powers of the Laplacian on the circle and of the distribution (x+i0)s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(x+i 0)^s$$\end{document}. We also make a relation with a result of Keiper [Fractional Calculus and its relationship to Riemann’s zeta function, Master of Science, Ohio State University, Mathematics (1975)].
机构:
Fuyang Normal Univ, Sch Math & Stat, Fuyang 236041, Anhui, Peoples R ChinaFuyang Normal Univ, Sch Math & Stat, Fuyang 236041, Anhui, Peoples R China
Wang, Guangqing
Chen, Wenyi
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R ChinaFuyang Normal Univ, Sch Math & Stat, Fuyang 236041, Anhui, Peoples R China