Pseudo-differential operators on the circle, Bernoulli polynomials

被引:0
|
作者
Roger Gay
Ahmed Sebbar
机构
[1] University Bordeaux,
[2] IMB UMR 5251,undefined
[3] Chapman University,undefined
[4] One University Drive,undefined
[5] University Bordeaux,undefined
[6] IMB,undefined
[7] UMR 11M35,undefined
关键词
Hurwitz zeta function; Polylogarithm function; Bernoulli numbers; Complex powers of operators; 11M35; 11M06; 11B68; 32W25;
D O I
暂无
中图分类号
学科分类号
摘要
We show how the classical polylogarithm function Lis(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Li}_s(z)$$\end{document} and its relatives, the Hurwitz zeta function and the Lerch function are all of a spectral nature, and can explain many properties of the complex powers of the Laplacian on the circle and of the distribution (x+i0)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x+i 0)^s$$\end{document}. We also make a relation with a result of Keiper [Fractional Calculus and its relationship to Riemann’s zeta function, Master of Science, Ohio State University, Mathematics (1975)].
引用
收藏
页码:1 / 25
页数:24
相关论文
共 50 条