Integral representations and the generalized Poincaré inequality on Carnot groups

被引:0
|
作者
E. A. Plotnikova
机构
[1] Novosibirsk State University,
来源
关键词
Carnot group; integral representation; Poincaré inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We give some integral representations of the form f(x) = P(f)+K(∇f) on two-step Carnot groups, where P(f) is a polynomial and K is an integral operator with a specific singularity. We then obtain the weak Poincaré inequality and coercive estimates as well as the generalized Poincaré inequality on the general Carnot groups.
引用
收藏
页码:339 / 352
页数:13
相关论文
共 50 条
  • [31] Exact values of constants in the generalized triangle inequality for some (1, q 2)-quasimetrics on canonical Carnot groups
    Greshnov, A. V.
    Tryamkin, M. V.
    MATHEMATICAL NOTES, 2015, 98 (3-4) : 694 - 698
  • [32] Harnack inequality for fractional sub-Laplacians in Carnot groups
    Fausto Ferrari
    Bruno Franchi
    Mathematische Zeitschrift, 2015, 279 : 435 - 458
  • [33] Harnack inequality for fractional sub-Laplacians in Carnot groups
    Ferrari, Fausto
    Franchi, Bruno
    MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (1-2) : 435 - 458
  • [34] Jacobian determinant inequality on corank 1 Carnot groups with applications
    Balogh, Zoltan M.
    Kristaly, Alexandru
    Sipos, Kinga
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (12)
  • [35] CLASS GROUPS FOR INTEGRAL REPRESENTATIONS OF METACYCLIC GROUPS
    GALOVICH, S
    ULLOM, S
    REINER, I
    MATHEMATIKA, 1972, 19 (37) : 105 - &
  • [36] GENERALIZED INTEGRAL MERCER'S INEQUALITY AND INTEGRAL MEANS
    Ali, M. Maqsood
    Khan, Asif R.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (01): : 60 - 76
  • [37] AN INTEGRAL INEQUALITY ASSOCIATED WITH GENERALIZED VARIATION
    UPTON, CJF
    APPLICABLE ANALYSIS, 1982, 14 (01) : 1 - 9
  • [38] An inequality for generalized complete elliptic integral
    Yin, Li
    Huang, Li-Guo
    Wang, Yong-Li
    Lin, Xiu-Li
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [39] An inequality for generalized complete elliptic integral
    Li Yin
    Li-Guo Huang
    Yong-Li Wang
    Xiu-Li Lin
    Journal of Inequalities and Applications, 2017
  • [40] INTEGRAL REPRESENTATIONS OF GENERALIZED HARMONIC FUNCTIONS
    Qiao, Lei
    Pan, Guoshuang
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (05): : 1503 - 1521