On characterization of being a generalized Fibonacci Q-matrix of linear combinations of two generalized Fibonacci Q-matrices

被引:0
|
作者
A. Öndül
T. Demirkol
H. Özdemir
机构
[1] Sakarya University,Department of Mathematics
来源
Afrika Matematika | 2024年 / 35卷
关键词
Fibonacci numbers; Fibonacci ; -matrix; Generalized Fibonacci numbers; Linear combination; Matrix equations; 15A15; 15A16; 15A24; 11B39; 11Y55;
D O I
暂无
中图分类号
学科分类号
摘要
It is given a characterization of being a matrix Qg(a3,b3)(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a_3},{b_3})}^{(k)}$$\end{document} of linear combination of a matrix Qg(a1,b1)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a_1},{b_1})}^{(n)}$$\end{document} and a matrix Qg(a2,b2)(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a_2},{b_2})}^{(m)}$$\end{document}, where ai,bi∈R∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{i}, b_{i} \in \mathbb {R}^{*}$$\end{document}, i=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1, 2, 3$$\end{document}, m,n,k∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m, n, k \in \mathbb {Z}$$\end{document}, and Qg(a,b)(l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a},{b})}^{(l)}$$\end{document} denotes an (a, b)-generalized Fibonacci Q-matrix with l∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l\in \mathbb {Z}$$\end{document}. In addition, some examples are presented illustrating the main result. Finally, some applications of the main result obtained are given.
引用
收藏
相关论文
共 46 条
  • [31] On Generalized Bivariate (p,q)-Bernoulli-Fibonacci Polynomials and Generalized Bivariate (p,q)-Bernoulli-Lucas Polynomials
    Guan, Hao
    Khan, Waseem Ahmad
    Kizilates, Can
    SYMMETRY-BASEL, 2023, 15 (04):
  • [32] Image encryption based on 8D hyperchaotic system using Fibonacci Q-Matrix
    Biban, Geeta
    Chugh, Renu
    Panwar, Anju
    CHAOS SOLITONS & FRACTALS, 2023, 170
  • [33] An empirical Q-matrix validation method for the sequential generalized DINA model
    Ma, Wenchao
    de la Torre, Jimmy
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2020, 73 (01): : 142 - 163
  • [34] A trace partitioned Gray code for q-ary generalized Fibonacci strings
    Bernini, A.
    Bilotta, S.
    Pinzani, R.
    Vajnovszki, V.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (06): : 751 - 761
  • [35] A reversible fragile watermarking technique using fourier transform and Fibonacci Q-matrix for medical image authentication
    Bouarroudj, Riadh
    Souami, Feryel
    Bellala, Fatma Zohra
    Zerrouki, Nabil
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 92
  • [36] New Properties and Matrix Representations on Higher-Order Generalized Fibonacci Quaternions with q-Integer Components
    Kizilates, Can
    Du, Wei-Shih
    Terzioglu, Nazlihan
    Chen, Ren-Chuen
    AXIOMS, 2024, 13 (10)
  • [37] The generalized quadraticity of linear combinations of two commuting quadratic matrices
    Uc, Mahmut
    Petik, Tugba
    Ozdemir, Halim
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (09): : 1696 - 1715
  • [38] Band gaps and transmission spectra in generalized Fibonacci σ(p, q) one-dimensional magnonic quasicrystals
    Costa, C. H. O.
    Vasconcelos, M. S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (28)
  • [39] Dynamic analysis of FN-HR neural network coupled of bistable memristor and encryption application based on Fibonacci Q-Matrix
    Sun, Junwei
    Li, Chuangchuang
    Wang, Yanfeng
    Wang, Zicheng
    COGNITIVE NEURODYNAMICS, 2024, : 2975 - 2992
  • [40] Connections between two classes of generalized Fibonacci numbers squared and permanents of (0,1) Toeplitz matrices
    Allen, Michael A.
    Edwards, Kenneth
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (13): : 2091 - 2103