On characterization of being a generalized Fibonacci Q-matrix of linear combinations of two generalized Fibonacci Q-matrices

被引:0
|
作者
A. Öndül
T. Demirkol
H. Özdemir
机构
[1] Sakarya University,Department of Mathematics
来源
Afrika Matematika | 2024年 / 35卷
关键词
Fibonacci numbers; Fibonacci ; -matrix; Generalized Fibonacci numbers; Linear combination; Matrix equations; 15A15; 15A16; 15A24; 11B39; 11Y55;
D O I
暂无
中图分类号
学科分类号
摘要
It is given a characterization of being a matrix Qg(a3,b3)(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a_3},{b_3})}^{(k)}$$\end{document} of linear combination of a matrix Qg(a1,b1)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a_1},{b_1})}^{(n)}$$\end{document} and a matrix Qg(a2,b2)(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a_2},{b_2})}^{(m)}$$\end{document}, where ai,bi∈R∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{i}, b_{i} \in \mathbb {R}^{*}$$\end{document}, i=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1, 2, 3$$\end{document}, m,n,k∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m, n, k \in \mathbb {Z}$$\end{document}, and Qg(a,b)(l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a},{b})}^{(l)}$$\end{document} denotes an (a, b)-generalized Fibonacci Q-matrix with l∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l\in \mathbb {Z}$$\end{document}. In addition, some examples are presented illustrating the main result. Finally, some applications of the main result obtained are given.
引用
收藏
相关论文
共 46 条