Dealing with Missing Data using a Selection Algorithm on Rough Sets

被引:0
|
作者
Jonathan Prieto-Cubides
Camilo Argoty
机构
[1] Universidad EAFIT,
[2] Grupo de Investigación Pensamiento,undefined
[3] Universidad Sergio Arboleda,undefined
[4] Universidad Militar Nueva Granada,undefined
关键词
Categorical; Imputation; Missing Values; Rough Sets;
D O I
暂无
中图分类号
学科分类号
摘要
This paper discusses the so-called missing data problem, i.e. the problem of imputing missing values in information systems. A new algorithm, called the ARSI algorithm, is proposed to address the imputation problem of missing values on categorical databases using the framework of rough set theory. This algorithm can be seen as a refinement of the ROUSTIDA algorithm and combines the approach of a generalized non-symmetric similarity relation with a generalized discernibility matrix to predict the missing values on incomplete information systems. Computational experiments show that the proposed algorithm is as efficient and competitive as other imputation algorithms.
引用
收藏
页码:1307 / 1321
页数:14
相关论文
共 50 条
  • [21] ESRS: A case selection algorithm using extended similarity-based rough sets
    Geng, LQ
    Hamilton, HJ
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2002, : 609 - 612
  • [22] A New Heuristic Feature Selection Algorithm Based on Rough Sets
    Zhao, Hua
    Qin, Keyun
    Qiu, Xiaoping
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, 2010, 93 : 147 - +
  • [23] Modified cuckoo search algorithm with rough sets for feature selection
    Abd El Aziz, Mohamed
    Hassanien, Aboul Ella
    [J]. NEURAL COMPUTING & APPLICATIONS, 2018, 29 (04): : 925 - 934
  • [24] Modified cuckoo search algorithm with rough sets for feature selection
    Mohamed Abd El Aziz
    Aboul Ella Hassanien
    [J]. Neural Computing and Applications, 2018, 29 : 925 - 934
  • [25] Hybrid flower pollination algorithm with rough sets for feature selection
    Zawbaa, Hossam M.
    Hassanien, Aboul Ella
    Emary, E.
    Yamany, Waleed
    Parv, B.
    [J]. 2015 11TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO), 2015, : 278 - 283
  • [26] A new algorithm for feature selection based on rough sets theory
    Caballero, Yaile
    Alvarez, Delia
    Balta, Analay
    Bello, Rafael
    Garcia, Maria
    [J]. REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2007, (41): : 132 - 144
  • [27] Discovering patterns of missing data in survey databases: An application of rough sets
    Wang, Hai
    Wang, Shouhong
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 6256 - 6260
  • [28] Instance and Feature Selection Using Fuzzy Rough Sets: A Bi-Selection Approach for Data Reduction
    Zhang, Xiao
    Mei, Changlin
    Li, Jinhai
    Yang, Yanyan
    Qian, Ting
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (06) : 1981 - 1994
  • [29] Heuristic method for attribute selection from partially uncertain data using rough sets
    Trabelsi, Salsabil
    Elouedi, Zied
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2010, 39 (03) : 271 - 290
  • [30] Feature Selection With Missing Labels Using Multilabel Fuzzy Neighborhood Rough Sets and Maximum Relevance Minimum Redundancy
    Sun, Lin
    Yin, Tengyu
    Ding, Weiping
    Qian, Yuhua
    Xu, Jiucheng
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (05) : 1197 - 1211