Dealing with Missing Data using a Selection Algorithm on Rough Sets

被引:0
|
作者
Jonathan Prieto-Cubides
Camilo Argoty
机构
[1] Universidad EAFIT,
[2] Grupo de Investigación Pensamiento,undefined
[3] Universidad Sergio Arboleda,undefined
[4] Universidad Militar Nueva Granada,undefined
关键词
Categorical; Imputation; Missing Values; Rough Sets;
D O I
暂无
中图分类号
学科分类号
摘要
This paper discusses the so-called missing data problem, i.e. the problem of imputing missing values in information systems. A new algorithm, called the ARSI algorithm, is proposed to address the imputation problem of missing values on categorical databases using the framework of rough set theory. This algorithm can be seen as a refinement of the ROUSTIDA algorithm and combines the approach of a generalized non-symmetric similarity relation with a generalized discernibility matrix to predict the missing values on incomplete information systems. Computational experiments show that the proposed algorithm is as efficient and competitive as other imputation algorithms.
引用
收藏
页码:1307 / 1321
页数:14
相关论文
共 50 条
  • [1] Dealing with Missing Data using a Selection Algorithm on Rough Sets
    Prieto-Cubides, Jonathan
    Argoty, Camilo
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2018, 11 (01) : 1307 - 1321
  • [2] Dealing with Zeros and Missing Values in Compositional Data Sets Using Nonparametric Imputation
    J. A. Martín-Fernández
    C. Barceló-Vidal
    V. Pawlowsky-Glahn
    [J]. Mathematical Geology, 2003, 35 : 253 - 278
  • [3] Dealing with zeros and missing values in compositional data sets using nonparametric imputation
    Martín-Fernández, JA
    Barceló-Vidal, C
    Pawlowsky-Glahn, V
    [J]. MATHEMATICAL GEOLOGY, 2003, 35 (03): : 253 - 278
  • [4] Dealing with missing data using the Heckman selection model: methods primer for epidemiologists
    Munoz, Johanna
    Hufstedler, Heather
    Gustafson, Paul
    Baernighausen, Till
    De Jong, Valentijn M. T.
    Debray, Thomas P. A.
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2023, 52 (01) : 5 - 13
  • [5] Selection into Shipbuilding Occupations when Dealing with Missing Data
    Gebhardt, Deborah L.
    Baker, Todd A.
    [J]. MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2017, 49 (05): : 108 - 108
  • [6] Distributed Feature Selection for Big Data Using Fuzzy Rough Sets
    Kong, Linghe
    Qu, Wenhao
    Yu, Jiadi
    Zuo, Hua
    Chen, Guihai
    Xiong, Fei
    Pan, Shirui
    Lin, Siyu
    Qiu, Meikang
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (05) : 846 - 857
  • [7] Hybrid data selection with preservation rough sets
    Villuendas-Rey, Yenny
    [J]. SOFT COMPUTING, 2022, 26 (21) : 11197 - 11223
  • [8] Hybrid data selection with preservation rough sets
    Yenny Villuendas-Rey
    [J]. Soft Computing, 2022, 26 : 11197 - 11223
  • [9] A New Diffusion Kalman Algorithm Dealing with Missing Data
    Xiao, Shuangyi
    Mu, Nankun
    Chen, Feng
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT II, 2019, 11555 : 273 - 281
  • [10] Applying rough sets to data tables containing missing values
    Nakata, Michinori
    Sakai, Hiroshi
    [J]. ROUGH SETS AND INTELLIGENT SYSTEMS PARADIGMS, PROCEEDINGS, 2007, 4585 : 181 - +