Some Ambarzumyan Type Theorems for Bessel Operator on a Finite Interval

被引:0
|
作者
Emrah Yilmaz
Hikmet Koyunbakan
机构
[1] Firat University,Department of Mathematics
关键词
Spectrum; Ambarzumyan theorem; Bessel operator ; Nodal points; 34A55; 34L05; 34L20;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we deal with an inverse problem for Bessel operator on a finite interval. We present some results of the associated with Ambarzumyan’s theorem by using spectrum and nodal points (zeros of eigenfunction).
引用
收藏
页码:553 / 559
页数:6
相关论文
共 50 条
  • [21] The Bessel Expansion of Fourier Integral on Finite Interval
    Zhou, Yongxiong
    Zhao, Zhenyu
    SYMMETRY-BASEL, 2019, 11 (05):
  • [22] Matrix Sturm-Liouville equation with a Bessel-type singularity on a finite interval
    Bondarenko, Natalia
    ANALYSIS AND MATHEMATICAL PHYSICS, 2017, 7 (01) : 77 - 92
  • [23] Boas-type theorems for the Bessel transform
    Loualid, El Mehdi
    Elgargati, Abdelghani
    Berkak, El Mehdi
    Daher, Radouan
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [24] Boas-type theorems for the Bessel transform
    El Mehdi Loualid
    Abdelghani Elgargati
    El Mehdi Berkak
    Radouan Daher
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [25] The ultrahyperbolic Bessel operator: Some basic properties
    Cerutti, RA
    MATHEMATICAL AND COMPUTER MODELLING, 1997, 25 (11) : 89 - 94
  • [26] ON SOME SPECTRAL PROPERTIES OF THE BESSEL DIFFERENTIAL OPERATOR
    ZHILIAEV, AI
    DOKLADY AKADEMII NAUK SSSR, 1988, 301 (02): : 278 - 280
  • [27] The Ultrahyperbolic Bessel Operator: Some Basic Properties
    Cerutti, R. A.
    Mathematical and Computer Modelling (Oxford), 25 (11):
  • [28] Ambarzumyan theorem for third order ordinary differential equations with discontinuity conditions inside a finite interval
    Yixuan Liu
    Jun Yan
    Analysis and Mathematical Physics, 2023, 13
  • [29] REPRESENTATION THEOREMS FOR SOME OPERATOR IDEALS
    COBOS, F
    RESINA, I
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 39 : 324 - 334
  • [30] Equivalence of K-functionals and modulus of smoothness generated by a Bessel type operator on the interval [0, 1]
    S. El Ouadih
    R. Daher
    Journal of Pseudo-Differential Operators and Applications, 2018, 9 : 933 - 951