Some Ambarzumyan Type Theorems for Bessel Operator on a Finite Interval

被引:0
|
作者
Emrah Yilmaz
Hikmet Koyunbakan
机构
[1] Firat University,Department of Mathematics
关键词
Spectrum; Ambarzumyan theorem; Bessel operator ; Nodal points; 34A55; 34L05; 34L20;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we deal with an inverse problem for Bessel operator on a finite interval. We present some results of the associated with Ambarzumyan’s theorem by using spectrum and nodal points (zeros of eigenfunction).
引用
收藏
页码:553 / 559
页数:6
相关论文
共 50 条
  • [1] Some Ambarzumyan Type Theorems for Bessel Operator on a Finite Interval
    Yilmaz, Emrah
    Koyunbakan, Hikmet
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2019, 27 (04) : 553 - 559
  • [2] On Ambarzumyan-type theorems
    Yurko, V. A.
    APPLIED MATHEMATICS LETTERS, 2013, 26 (04) : 506 - 509
  • [3] Some Ambarzumyan-type theorems for Dirac operators
    Yang, Chuan-Fu
    Yang, Xiao-Ping
    INVERSE PROBLEMS, 2009, 25 (09)
  • [4] On extensions of the Bessel operator on a finite interval and a half-line
    Viktoriya S. Alekseeva
    Aleksandra Yu. Ananieva
    Journal of Mathematical Sciences, 2012, 187 (1) : 1 - 8
  • [5] Ambarzumyan-type theorems on a time scale
    Ozkan, Ahmet Sinan
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2018, 26 (05): : 633 - 637
  • [6] To the spectral theory of the Bessel operator on finite interval and half-line
    Ananieva A.Y.
    Budyika V.S.
    Journal of Mathematical Sciences, 2015, 211 (5) : 624 - 645
  • [7] On the spectral theory of the Bessel operator on a finite interval and the half-line
    Anan'eva, A. Yu.
    Budyka, V. S.
    DIFFERENTIAL EQUATIONS, 2016, 52 (11) : 1517 - 1522
  • [8] On the spectral theory of the Bessel operator on a finite interval and the half-line
    A. Yu. Anan’eva
    V. S. Budyka
    Differential Equations, 2016, 52 : 1517 - 1522
  • [9] AMBARZUMYAN-TYPE THEOREMS ON STAR GRAPHS
    Yang, Chuan Fu
    Pivovarchik, Vyacheslav N.
    Huang, Zhen You
    OPERATORS AND MATRICES, 2011, 5 (01): : 119 - 131
  • [10] Paley–Wiener-Type Theorems Associated to the Laplace–Bessel Operator
    Minggang Fei
    Yu Hu
    Complex Analysis and Operator Theory, 2023, 17