Towards an universal classification of scale invariant processes

被引:0
|
作者
B. Dubrulle
F.-M. Bréon
F. Graner
A. Pocheau
机构
[1] CNRS (URA 2052),
[2] CEA/DSM/DAPNIA/Service d'Astrophysique,undefined
[3] CE Saclay,undefined
[4] 91191 Gif-sur-Yvette,undefined
[5] France,undefined
[6] CNRS (URA 285),undefined
[7] Observatoire Midi-Pyrénées,undefined
[8] 14 avenue Belin,undefined
[9] 31400 Toulouse,undefined
[10] France,undefined
[11] CEA/DSM/LMCE,undefined
[12] CE Saclay,undefined
[13] 91191 Gif-sur-Yvette,undefined
[14] France,undefined
[15] CNRS (UMR 5588),undefined
[16] Laboratoire de Spectrométrie Physique,undefined
[17] Université Grenoble I,undefined
[18] BP 87,undefined
[19] 38402 Saint-Martin-d'Hères,undefined
[20] France,undefined
[21] IRPHE (UMR 6594 CNRS),undefined
[22] Universités Aix-Marseille I & II,undefined
[23] Centre de Saint-Jérôme,undefined
[24] S.252,undefined
[25] 13397 Marseille,undefined
[26] France,undefined
关键词
PACS. 11.30.-j Symmetry and conservation laws;
D O I
暂无
中图分类号
学科分类号
摘要
We consider fields which take random values over several decades. Starting from physical examples, we postulate that scale is not an absolute quantity. We then establish the equivalence between two existing approaches based on scale symmetry arguments as general as possible. This yields a classification of log-infinitely divisible laws, possibly universal. The physical significance of the parameters entering in the classification is discussed.
引用
下载
收藏
页码:89 / 94
页数:5
相关论文
共 50 条
  • [11] Scale invariant texture classification via sparse representation
    Sun, Xiangping
    Wang, Jin
    She, Mary F. H.
    Kong, Lingxue
    NEUROCOMPUTING, 2013, 122 : 338 - 348
  • [12] Investigation of scale-invariant image classification mechanisms
    Moiseenko, G. A.
    Pronin, S., V
    Shelepin, Yu E.
    JOURNAL OF OPTICAL TECHNOLOGY, 2019, 86 (11) : 729 - 733
  • [13] Scale and translation invariant shape and signal classification and detection
    Williams, WJ
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS XIII, 2003, 5205 : 1 - 12
  • [14] Augmented TDNN for frequency and scale invariant sequence classification
    Zhang, XM
    Chen, YQ
    Babri, HA
    NEUROCOMPUTING, 2003, 50 (50) : 1 - 16
  • [15] Universal Spatiotemporal Sampling Sets for Discrete Spatially Invariant Evolution Processes
    Tang, Sui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (09) : 5518 - 5528
  • [16] Scale-invariant growth processes in expanding space
    Ali, Adnan
    Ball, Robin C.
    Grosskinsky, Stefan
    Somfai, Ellak
    PHYSICAL REVIEW E, 2013, 87 (02):
  • [17] Are diatom community assembly processes scale invariant in streams?
    Soininen, Janne
    FRESHWATER BIOLOGY, 2023, 68 (03) : 502 - 508
  • [18] On the central role of scale invariant Poisson processes on (0, ∞)
    Arratia, R
    MICROSURVEYS IN DISCRETE PROBABILITY, 1998, 41 : 21 - 41
  • [19] Maximum Entropy Distributions of Scale-Invariant Processes
    Nieves, Veronica
    Wang, Jingfeng
    Bras, Rafael L.
    Wood, Elizabeth
    PHYSICAL REVIEW LETTERS, 2010, 105 (11)
  • [20] Electronic Tongue on a way towards the universal bitterness scale
    Legin, Andrey
    Kirsanov, Dmitry
    Rudnitskaya, Alisa
    Seleznev, Boris
    Legin, Evgeny
    Papieva, Irina
    Clapham, David
    Saunders, Ken
    Richardson, Marie
    OLFACTION AND ELECTRONIC NOSE: PROCEEDINGS OF THE 14TH INTERNATIONAL SYMPOSIUM ON OLFACTION AND ELECTRONIC NOSE, 2011, 1362 : 93 - +