Towards an universal classification of scale invariant processes

被引:0
|
作者
B. Dubrulle
F.-M. Bréon
F. Graner
A. Pocheau
机构
[1] CNRS (URA 2052),
[2] CEA/DSM/DAPNIA/Service d'Astrophysique,undefined
[3] CE Saclay,undefined
[4] 91191 Gif-sur-Yvette,undefined
[5] France,undefined
[6] CNRS (URA 285),undefined
[7] Observatoire Midi-Pyrénées,undefined
[8] 14 avenue Belin,undefined
[9] 31400 Toulouse,undefined
[10] France,undefined
[11] CEA/DSM/LMCE,undefined
[12] CE Saclay,undefined
[13] 91191 Gif-sur-Yvette,undefined
[14] France,undefined
[15] CNRS (UMR 5588),undefined
[16] Laboratoire de Spectrométrie Physique,undefined
[17] Université Grenoble I,undefined
[18] BP 87,undefined
[19] 38402 Saint-Martin-d'Hères,undefined
[20] France,undefined
[21] IRPHE (UMR 6594 CNRS),undefined
[22] Universités Aix-Marseille I & II,undefined
[23] Centre de Saint-Jérôme,undefined
[24] S.252,undefined
[25] 13397 Marseille,undefined
[26] France,undefined
关键词
PACS. 11.30.-j Symmetry and conservation laws;
D O I
暂无
中图分类号
学科分类号
摘要
We consider fields which take random values over several decades. Starting from physical examples, we postulate that scale is not an absolute quantity. We then establish the equivalence between two existing approaches based on scale symmetry arguments as general as possible. This yields a classification of log-infinitely divisible laws, possibly universal. The physical significance of the parameters entering in the classification is discussed.
引用
收藏
页码:89 / 94
页数:5
相关论文
共 50 条
  • [1] Towards an universal classification of scale invariant processes
    Dubrulle, B
    Breon, FM
    Graner, F
    Pocheau, A
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1998, 4 (01): : 89 - 94
  • [2] Towards Threshold Invariant Fair Classification
    Chen, Mingliang
    Wu, Min
    [J]. CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2020), 2020, 124 : 560 - 569
  • [3] Conformally invariant quantization - towards the complete classification
    Silhan, Josef
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 33 : 162 - 176
  • [4] Scale invariant texture classification with mathematical morphology
    Ballarin, VL
    Brun, M
    Moler, EG
    [J]. LATIN AMERICAN APPLIED RESEARCH, 2001, 31 (02) : 79 - 82
  • [5] A Bayesian Analysis of Scale-Invariant Processes
    Nieves, Veronica
    Wang, Jingfeng
    Bras, Rafael L.
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2012, 1443 : 56 - 62
  • [6] Innovative methods for modeling of scale invariant processes
    Rezakhah, S.
    Philippe, A.
    Modarresi, N.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (13) : 3178 - 3191
  • [7] Towards Scale and Position Invariant Task Classification Using Normalised Visual Scanpaths in Clinical Fetal Ultrasound
    Teng, Clare
    Sharma, Harshita
    Drukker, Lior
    Papageorghiou, Aris T.
    Noble, J. Alison
    [J]. SIMPLIFYING MEDICAL ULTRASOUND, 2021, 12967 : 129 - 138
  • [8] Towards Semi-Supervised Universal Graph Classification
    Luo, Xiao
    Zhao, Yusheng
    Qin, Yifang
    Ju, Wei
    Zhang, Ming
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 416 - 428
  • [9] Scale invariant texture classification by iterative morphological decomposition
    Lam, WK
    Li, CK
    [J]. ELECTRONICS LETTERS, 1996, 32 (06) : 534 - 535
  • [10] Scale invariant texture classification via sparse representation
    Sun, Xiangping
    Wang, Jin
    She, Mary F. H.
    Kong, Lingxue
    [J]. NEUROCOMPUTING, 2013, 122 : 338 - 348