A comprehensive evaluation of module detection methods for gene expression data

被引:0
|
作者
Wouter Saelens
Robrecht Cannoodt
Yvan Saeys
机构
[1] VIB Center for Inflammation Research,Data Mining and Modelling for Biomedicine
[2] Ghent University,Department of Applied Mathematics, Computer Science and Statistics
[3] Ghent University Hospital,Center for Medical Genetics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A critical step in the analysis of large genome-wide gene expression datasets is the use of module detection methods to group genes into co-expression modules. Because of limitations of classical clustering methods, numerous alternative module detection methods have been proposed, which improve upon clustering by handling co-expression in only a subset of samples, modelling the regulatory network, and/or allowing overlap between modules. In this study we use known regulatory networks to do a comprehensive and robust evaluation of these different methods. Overall, decomposition methods outperform all other strategies, while we do not find a clear advantage of biclustering and network inference-based approaches on large gene expression datasets. Using our evaluation workflow, we also investigate several practical aspects of module detection, such as parameter estimation and the use of alternative similarity measures, and conclude with recommendations for the further development of these methods.
引用
收藏
相关论文
共 50 条
  • [1] A comprehensive evaluation of module detection methods for gene expression data
    Saelens, Wouter
    Cannoodt, Robrecht
    Saeys, Yvan
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [2] Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Rapaport, Franck
    Khanin, Raya
    Liang, Yupu
    Pirun, Mono
    Krek, Azra
    Zumbo, Paul
    Mason, Christopher E.
    Socci, Nicholas D.
    Betel, Doron
    [J]. GENOME BIOLOGY, 2013, 14 (09):
  • [3] Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data
    Mi Hyeon Kim
    Hwa Jeong Seo
    Je-Gun Joung
    Ju Han Kim
    [J]. BMC Bioinformatics, 12
  • [4] Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data
    Kim, Mi Hyeon
    Seo, Hwa Jeong
    Joung, Je-Gun
    Kim, Ju Han
    [J]. BMC BIOINFORMATICS, 2011, 12
  • [5] Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Franck Rapaport
    Raya Khanin
    Yupu Liang
    Mono Pirun
    Azra Krek
    Paul Zumbo
    Christopher E Mason
    Nicholas D Socci
    Doron Betel
    [J]. Genome Biology, 14
  • [6] Erratum to: Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Franck Rapaport
    Raya Khanin
    Yupu Liang
    Mono Pirun
    Azra Krek
    Paul Zumbo
    Christopher E. Mason
    Nicholas D. Socci
    Doron Betel
    [J]. Genome Biology, 16
  • [7] Comprehensive evaluation of deconvolution methods for human brain gene expression
    Sutton, Gavin J.
    Poppe, Daniel
    Simmons, Rebecca K.
    Walsh, Kieran
    Nawaz, Urwah
    Lister, Ryan
    Gagnon-Bartsch, Johann A.
    Voineagu, Irina
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [8] Comprehensive evaluation of deconvolution methods for human brain gene expression
    Gavin J. Sutton
    Daniel Poppe
    Rebecca K. Simmons
    Kieran Walsh
    Urwah Nawaz
    Ryan Lister
    Johann A. Gagnon-Bartsch
    Irina Voineagu
    [J]. Nature Communications, 13
  • [9] Comprehensive evaluation of methods for differential expression analysis of metatranscriptomics data
    Cho, Hunyong
    Qu, Yixiang
    Liu, Chuwen
    Tang, Boyang
    Lyu, Ruiqi
    Lin, Bridget M.
    Roach, Jeffrey
    Azcarate-Peril, M. Andrea
    Aguiar Ribeiro, Apoena
    Love, Michael, I
    Divaris, Kimon
    Wu, Di
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [10] Systematic Evaluation of Scaling Methods for Gene Expression Data
    Pandey, Gaurav
    Ramakrishnan, Lakshmi Naarayanan
    Steinbach, Michael
    Kumar, Vipin
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, PROCEEDINGS, 2008, : 376 - 381