Comprehensive evaluation of deconvolution methods for human brain gene expression

被引:44
|
作者
Sutton, Gavin J. [1 ]
Poppe, Daniel [2 ,3 ,4 ]
Simmons, Rebecca K. [2 ,3 ,4 ]
Walsh, Kieran [1 ]
Nawaz, Urwah [5 ]
Lister, Ryan [2 ,3 ,4 ]
Gagnon-Bartsch, Johann A. [6 ]
Voineagu, Irina [1 ,7 ]
机构
[1] Univ New South Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW, Australia
[2] Univ Western Australia, Harry Perkins Inst Med Res, QEII Med Ctr, Perth, WA, Australia
[3] Univ Western Australia, Ctr Med Res, Perth, WA, Australia
[4] Univ Western Australia, Australian Res Council, Sch Mol Sci, Ctr Excellence Plant Energy Biol, Perth, WA, Australia
[5] Univ Adelaide, Adelaide Med Sch, Robinson Res Inst, Adelaide, SA, Australia
[6] Univ Michigan, Dept Stat, 1085 South Univ Ave, Ann Arbor, MI 48109 USA
[7] Univ New South Wales, Cellular Genom Futures Inst, Sydney, NSW, Australia
基金
澳大利亚国家健康与医学研究理事会; 澳大利亚研究理事会;
关键词
SINGLE-CELL ANALYSIS; HUMAN ADULT; TRANSCRIPTOME; REVEALS; LANDSCAPE; MODEL;
D O I
10.1038/s41467-022-28655-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transcriptome deconvolution aims to estimate the cellular composition of an RNA sample from its gene expression data, which in turn can be used to correct for composition differences across samples. The human brain is unique in its transcriptomic diversity, and comprises a complex mixture of cell-types, including transcriptionally similar subtypes of neurons. Here, we carry out a comprehensive evaluation of deconvolution methods for human brain transcriptome data, and assess the tissue-specificity of our key observations by comparison with human pancreas and heart. We evaluate eight transcriptome deconvolution approaches and nine cell-type signatures, testing the accuracy of deconvolution using in silico mixtures of single-cell RNA-seq data, RNA mixtures, as well as nearly 2000 human brain samples. Our results identify the main factors that drive deconvolution accuracy for brain data, and highlight the importance of biological factors influencing cell-type signatures, such as brain region and in vitro cell culturing. Transcriptome deconvolution aims to estimate cellular composition based on gene expression data. Here the authors evaluate deconvolution methods for human brain transcriptome and conclude that partial deconvolution algorithms work best, but that appropriate cell-type signatures are also important.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Comprehensive evaluation of deconvolution methods for human brain gene expression
    Gavin J. Sutton
    Daniel Poppe
    Rebecca K. Simmons
    Kieran Walsh
    Urwah Nawaz
    Ryan Lister
    Johann A. Gagnon-Bartsch
    Irina Voineagu
    [J]. Nature Communications, 13
  • [2] CellMix: a comprehensive toolbox for gene expression deconvolution
    Gaujoux, Renaud
    Seoighe, Cathal
    [J]. BIOINFORMATICS, 2013, 29 (17) : 2211 - 2212
  • [3] The Allen Human Brain Atlas Comprehensive gene expression mapping of the human brain
    Shen, Elaine H.
    Overly, Caroline C.
    Jones, Allan R.
    [J]. TRENDS IN NEUROSCIENCES, 2012, 35 (12) : 711 - 714
  • [4] A comprehensive evaluation of module detection methods for gene expression data
    Wouter Saelens
    Robrecht Cannoodt
    Yvan Saeys
    [J]. Nature Communications, 9
  • [5] A comprehensive evaluation of module detection methods for gene expression data
    Saelens, Wouter
    Cannoodt, Robrecht
    Saeys, Yvan
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [6] A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    Statnikov, A
    Aliferis, CF
    Tsamardinos, I
    Hardin, D
    Levy, S
    [J]. BIOINFORMATICS, 2005, 21 (05) : 631 - 643
  • [7] Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Rapaport, Franck
    Khanin, Raya
    Liang, Yupu
    Pirun, Mono
    Krek, Azra
    Zumbo, Paul
    Mason, Christopher E.
    Socci, Nicholas D.
    Betel, Doron
    [J]. GENOME BIOLOGY, 2013, 14 (09):
  • [8] Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data
    Mi Hyeon Kim
    Hwa Jeong Seo
    Je-Gun Joung
    Ju Han Kim
    [J]. BMC Bioinformatics, 12
  • [9] Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data
    Kim, Mi Hyeon
    Seo, Hwa Jeong
    Joung, Je-Gun
    Kim, Ju Han
    [J]. BMC BIOINFORMATICS, 2011, 12
  • [10] Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Franck Rapaport
    Raya Khanin
    Yupu Liang
    Mono Pirun
    Azra Krek
    Paul Zumbo
    Christopher E Mason
    Nicholas D Socci
    Doron Betel
    [J]. Genome Biology, 14