Smooth noncompact operators from C(K), K scattered

被引:0
|
作者
R. Deville
P. Hájek
机构
[1] Université de Bordeaux,Mathematiques Pures de Bordeaux
[2] Mathematical Institute of the Czech Academy of Science,undefined
来源
关键词
Banach Space; Homogeneous Polynomial; Banach Lattice; Canonical Basis; Separable Banach Space;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a Banach space, K be a scattered compact and T: BC(K) → X be a Fréchet smooth operator whose derivative is uniformly continuous. We introduce the smooth biconjugate T**: BC(K)** → X** and prove that if T is noncompact, then the derivative of T** at some point is a noncompact linear operator. Using this we conclude, among other things, that either \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {T(B_{c_0 } )} $$ \end{document} is compact or that ℓ1 is a complemented subspace of X*. We also give some relevant examples of smooth functions and operators, in particular, a C1,u-smooth noncompact operator from BcO which does not fix any (affine) basic sequence.
引用
收藏
页码:29 / 56
页数:27
相关论文
共 50 条
  • [1] Smooth noncompact operators from C(K), K scattered
    Deville, R.
    Hajek, P.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2007, 162 (01) : 29 - 56
  • [2] ON THE SPACE OF ALL REGULAR OPERATORS FROM C(K) INTO C(K)
    ANDREU, A
    MAZON, JM
    DELEON, SS
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1988, 91 (03): : 225 - 230
  • [3] COTYPE OF OPERATORS FROM C(K)
    TALAGRAND, M
    [J]. INVENTIONES MATHEMATICAE, 1992, 107 (01) : 1 - 40
  • [4] THE GAUSSIAN COTYPE OF OPERATORS FROM C(K)
    MONTGOMERYSMITH, SJ
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1989, 68 (01) : 123 - 128
  • [5] ON A CLASS OF OPERATORS ON C(K)
    Dosev, Detelin T.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (02): : 595 - 610
  • [6] EXTREME OPERATORS INTO C(K)
    BLUMENTHAL, RM
    LINDENSTRAUSS, J
    PHELPS, RR
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1965, 15 (03) : 747 - +
  • [7] Smooth functions on C(K)
    Hájek, P
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1998, 107 (1) : 237 - 252
  • [8] A CHAIN CONDITION FOR OPERATORS FROM C(K)-SPACES
    Hart, Klaas Pieter
    Kania, Tomasz
    Kochanek, Tomasz
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (02): : 703 - 715
  • [9] POLYNOMIAL OPERATORS IN C(K) [A,B]
    POTTINGER, P
    [J]. COMPUTING, 1976, 17 (02) : 163 - 167
  • [10] Entropy of C(K)-valued operators
    Steinwart, I
    [J]. JOURNAL OF APPROXIMATION THEORY, 2000, 103 (02) : 302 - 328