COTYPE OF OPERATORS FROM C(K)

被引:16
|
作者
TALAGRAND, M [1 ]
机构
[1] OHIO STATE UNIV,DEPT MATH,COLUMBUS,OH 43210
关键词
D O I
10.1007/BF01231879
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For q > 2, an operator from C(K) to X is of cotype q if and only if it factors through the Lorentz space L(tq(log t)q2), 1(mu). For q = 2, if X is a rearrangement invariant space on [0, 1], the injection C([0, 1]) --> X is of cotype 2 if and only if it factors through the Lorentz space L(t2 log t), 2 ([0, 1]); but there is a cotype 2 operator C(K) --> l infinity that does not factor through L(t2 log t, 2) (mu). If a Banach lattice X satisfies the Orlicz property, any bounded lattice operator T: C(K) --> X is of cotype 2. We however construct a Banach lattice with the Orlicz property, but that fails to be of cotype 2.
引用
收藏
页码:1 / 40
页数:40
相关论文
共 50 条
  • [1] THE GAUSSIAN COTYPE OF OPERATORS FROM C(K)
    MONTGOMERYSMITH, SJ
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1989, 68 (01) : 123 - 128
  • [2] Cotype and complemented copies of c(0) in spaces of operators
    Bonet, J
    Domanski, P
    Lindstrom, M
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1996, 46 (02) : 271 - 289
  • [3] Type and cotype of multilinear operators
    Botelho, Geraldo
    Campos, Jamilson R.
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (03): : 659 - 676
  • [4] Type and cotype of multilinear operators
    Geraldo Botelho
    Jamilson R. Campos
    [J]. Revista Matemática Complutense, 2016, 29 : 659 - 676
  • [5] THE RADEMACHER COTYPE OF OPERATORS FROM L-INFINITY-N
    MONTGOMERYSMITH, SJ
    TALAGRAND, M
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (01) : 187 - 194
  • [6] A NOTE ON OPERATORS FIXING COTYPE SUBSPACES OF C[0,1]
    Gasparis, I.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (05) : 1633 - 1639
  • [7] Cotype and absolutely summing linear operators
    Geraldo Botelho
    Daniel Pellegrino
    Pilar Rueda
    [J]. Mathematische Zeitschrift, 2011, 267 : 1 - 7
  • [8] Cotype and absolutely summing linear operators
    Botelho, Geraldo
    Pellegrino, Daniel
    Rueda, Pilar
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (1-2) : 1 - 7
  • [9] ON THE SPACE OF ALL REGULAR OPERATORS FROM C(K) INTO C(K)
    ANDREU, A
    MAZON, JM
    DELEON, SS
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1988, 91 (03): : 225 - 230
  • [10] Smooth noncompact operators from C(K), K scattered
    Deville, R.
    Hajek, P.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2007, 162 (01) : 29 - 56