Embracing off-the-grid samples

被引:1
|
作者
Lopez, Oscar [1 ]
Yilmaz, Ozgur [2 ]
机构
[1] Florida Atlantic Univ, Harbor Branch Oceanog Inst, 5600 US 1 North, Ft Pierce, FL 34946 USA
[2] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Nonuniform sampling; Sub-Nyquist sampling; Anti-aliasing; Jitter sampling; Compressive sensing; Dirichlet kernel; DENSITY CONDITIONS; NONUNIFORM; RECOVERY; RECONSTRUCTION; INTERPOLATION; SIGNALS;
D O I
10.1007/s43670-023-00065-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many empirical studies suggest that samples of continuous-time signals taken at locations randomly deviated from an equispaced grid (i.e., off-the-grid) can benefit signal acquisition, e.g., undersampling and anti-aliasing. However, explicit statements of such advantages and their respective conditions are scarce in the literature. This paper provides some insight on this topic when the sampling positions are known, with grid deviations generated i.i.d. from a variety distributions. By solving a square-root LASSO decoder with an interpolation kernel we demonstrate the capabilities of nonuniform samples for compressive sampling, an effective paradigm for undersampling and anti-aliasing. For functions in the Wiener algebra that admit a discrete s-sparse representation in some transform domain, we show that O(spolylogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(s{{\,\mathrm{poly\,\hspace{-2pt}log}\,}}N)$$\end{document} random off-the-grid samples are sufficient to recover an accurate N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{N}{2}$$\end{document}-bandlimited approximation of the signal. For sparse signals (i.e., s << N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \ll N$$\end{document}), this sampling complexity is a great reduction in comparison to equispaced sampling where O(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(N)$$\end{document} measurements are needed for the same quality of reconstruction (Nyquist-Shannon sampling theorem). We further consider noise attenuation via oversampling (relative to a desired bandwidth), a standard technique with limited theoretical understanding when the sampling positions are non-equispaced. By solving a least squares problem, we show that O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(N\log N)$$\end{document} i.i.d. randomly deviated samples provide an accurate N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{N}{2}$$\end{document}-bandlimited approximation of the signal with suppression of the noise energy by a factor similar to 1log(N).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \frac{1}{\sqrt{\log (N)}}.$$\end{document}
引用
收藏
页数:35
相关论文
共 50 条
  • [21] A low-rank approach to off-the-grid sparse deconvolution
    Catala, Paul
    Duval, Vincent
    Peyre, Gabriel
    [J]. 7TH INTERNATIONAL CONFERENCE ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS, 2017, 904
  • [22] Support Localization and the Fisher Metric for off-the-grid Sparse Regularization
    Poon, Clarice
    Keriven, Nicolas
    Peyre, Gabriel
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [23] DEVELOPMENT OF AN OFF-THE-GRID X-BAND RADAR FOR WEATHER APPLICATIONS
    Pablos-Vega, Gianni A.
    Colom-Ustariz, Jose G.
    Cruz-Pol, Sandra
    Trabal, Jorge M.
    Chandrasekar, V.
    George, Jim
    Junyent, Francesc
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1077 - 1080
  • [24] An off-the-grid approach to multi-compartment magnetic resonance fingerprinting
    Golbabaee, Mohammad
    Poon, Clarice
    [J]. INVERSE PROBLEMS, 2022, 38 (08)
  • [25] Compressive sensing-based robust off-the-grid stretch processing
    Ilhan, Ihsan
    Gurbuz, Ali Cafer
    Arikan, Orhan
    [J]. IET RADAR SONAR AND NAVIGATION, 2017, 11 (11): : 1730 - 1735
  • [26] Off-the-grid recovery of time and frequency shifts with multiple measurement vectors
    Safari, Maral
    Daei, Sajad
    Haddadi, Farzan
    [J]. SIGNAL PROCESSING, 2021, 183
  • [27] Towards Off-the-Grid Algorithms for Total Variation Regularized Inverse Problems
    De Castro, Yohann
    Duval, Vincent
    Petit, Romain
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2023, 65 (01) : 53 - 81
  • [28] OFF-THE-GRID MODEL BASED DEEP LEARNING (O-MODL)
    Pramanik, Aniket
    Aggarwal, Hemant
    Jacob, Mathews
    [J]. 2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1395 - 1398
  • [29] Towards Off-the-Grid Algorithms for Total Variation Regularized Inverse Problems
    Yohann De Castro
    Vincent Duval
    Romain Petit
    [J]. Journal of Mathematical Imaging and Vision, 2023, 65 : 53 - 81
  • [30] Off-the-Grid Line Spectrum Denoising and Estimation With Multiple Measurement Vectors
    Li, Yuanxin
    Chi, Yuejie
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (05) : 1257 - 1269