Embracing off-the-grid samples

被引:1
|
作者
Lopez, Oscar [1 ]
Yilmaz, Ozgur [2 ]
机构
[1] Florida Atlantic Univ, Harbor Branch Oceanog Inst, 5600 US 1 North, Ft Pierce, FL 34946 USA
[2] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Nonuniform sampling; Sub-Nyquist sampling; Anti-aliasing; Jitter sampling; Compressive sensing; Dirichlet kernel; DENSITY CONDITIONS; NONUNIFORM; RECOVERY; RECONSTRUCTION; INTERPOLATION; SIGNALS;
D O I
10.1007/s43670-023-00065-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many empirical studies suggest that samples of continuous-time signals taken at locations randomly deviated from an equispaced grid (i.e., off-the-grid) can benefit signal acquisition, e.g., undersampling and anti-aliasing. However, explicit statements of such advantages and their respective conditions are scarce in the literature. This paper provides some insight on this topic when the sampling positions are known, with grid deviations generated i.i.d. from a variety distributions. By solving a square-root LASSO decoder with an interpolation kernel we demonstrate the capabilities of nonuniform samples for compressive sampling, an effective paradigm for undersampling and anti-aliasing. For functions in the Wiener algebra that admit a discrete s-sparse representation in some transform domain, we show that O(spolylogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(s{{\,\mathrm{poly\,\hspace{-2pt}log}\,}}N)$$\end{document} random off-the-grid samples are sufficient to recover an accurate N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{N}{2}$$\end{document}-bandlimited approximation of the signal. For sparse signals (i.e., s << N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \ll N$$\end{document}), this sampling complexity is a great reduction in comparison to equispaced sampling where O(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(N)$$\end{document} measurements are needed for the same quality of reconstruction (Nyquist-Shannon sampling theorem). We further consider noise attenuation via oversampling (relative to a desired bandwidth), a standard technique with limited theoretical understanding when the sampling positions are non-equispaced. By solving a least squares problem, we show that O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(N\log N)$$\end{document} i.i.d. randomly deviated samples provide an accurate N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{N}{2}$$\end{document}-bandlimited approximation of the signal with suppression of the noise energy by a factor similar to 1log(N).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \frac{1}{\sqrt{\log (N)}}.$$\end{document}
引用
收藏
页数:35
相关论文
共 50 条
  • [1] The Off-the-Grid
    Boisseron, Benedicte
    [J]. TRANSITION, 2024, (135)
  • [2] Off-the-Grid Recovery of Piecewise Constant Images from Few Fourier Samples
    Ongie, Greg
    Jacob, Mathews
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (03): : 1004 - 1041
  • [3] The Geometry of Off-the-Grid Compressed Sensing
    Clarice Poon
    Nicolas Keriven
    Gabriel Peyré
    [J]. Foundations of Computational Mathematics, 2023, 23 : 241 - 327
  • [4] The Geometry of Off-the-Grid Compressed Sensing
    Poon, Clarice
    Keriven, Nicolas
    Peyre, Gabriel
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2023, 23 (01) : 241 - 327
  • [5] Off-the-grid Blind Deconvolution and Demixing
    Razavikia, Saeed
    Daei, Sajad
    Skoglund, Mikael
    Fodor, Gabor
    Fischione, Carlo
    [J]. IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 7604 - 7610
  • [6] Sensor calibration for off-the-grid spectral estimation
    Eldar, Yonina C.
    Liao, Wenjing
    Tang, Sui
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (02) : 570 - 598
  • [7] Degrees of freedom for off-the-grid sparse estimation
    Poon, Clarice
    Peyre, Gabriel
    [J]. BERNOULLI, 2022, 28 (03) : 2095 - 2121
  • [8] Sampling Patterns for Off-the-Grid Spectral Estimation
    Da Costa, Maxime Ferreira
    Dai, Wei
    [J]. 2017 FIFTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2017, : 318 - 322
  • [9] 欢迎回家 印度Off-the-Grid公寓
    Krishna Mistry
    [J]. 室内设计与装修., 2024, (12) - 37
  • [10] Backwoods Burlesque: Off-the-Grid Tsk Tsk
    Preece, Bronwyn
    [J]. CANADIAN THEATRE REVIEW, 2014, 158 : 18 - 21