Penalized complementarity functions on symmetric cones

被引:0
|
作者
Sangho Kum
Yongdo Lim
机构
[1] Chungbuk National University,Department of Mathematics Education
[2] Kyungpook National University,Department of Mathematics
来源
关键词
Complementarity problem; Complementarity functions; Merit functions; Symmetric cones; Primary: 90C33;
D O I
暂无
中图分类号
学科分类号
摘要
We show that penalized functions of the Fischer–Burmeister and the natural residual functions defined on symmetric cones are complementarity functions. Boundedness of the solution set of a symmetric cone complementarity problem, based on the penalized natural residual function, is proved under monotonicity and strict feasibility. The proof relies on a trace inequality on Euclidean Jordan algebras.
引用
收藏
页码:475 / 485
页数:10
相关论文
共 50 条
  • [21] Lattice point generating functions and symmetric cones
    Matthias Beck
    Thomas Bliem
    Benjamin Braun
    Carla D. Savage
    Journal of Algebraic Combinatorics, 2013, 38 : 543 - 566
  • [23] Lattice point generating functions and symmetric cones
    Beck, Matthias
    Bliem, Thomas
    Braun, Benjamin
    Savage, Carla D.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 38 (03) : 543 - 566
  • [24] HYPERGEOMETRIC-FUNCTIONS ASSOCIATED WITH SYMMETRIC CONES
    FARAUT, J
    KORANYI, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (11): : 555 - 558
  • [25] PENALIZED NCP-FUNCTIONS FOR NONLINEAR COMPLEMENTARITY PROBLEMS AND A SCALING ALGORITHM
    Wang, Jueyu
    Gu, Chao
    Wang, Guoqiang
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2022, 18 (06) : 4527 - 4550
  • [26] STRONG SEMISMOOTHNESS OF FISCHER-BURMEISTER COMPLEMENTARITY FUNCTION ASSOCIATED WITH SYMMETRIC CONES
    Chang, Yu-Lin
    Chen, Jein-Shan
    Pan, Shaohua
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2012, 13 (04) : 799 - 806
  • [27] On the P*(κ) horizontal linear complementarity problems over Cartesian product of symmetric cones
    Asadi, S.
    Mansouri, H.
    Darvay, Zs.
    Zangiabadi, M.
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (02): : 233 - 257
  • [28] An Infeasible Interior Point Method for Linear Complementarity Problems over Symmetric Cones
    Potra, Florian A.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1403 - 1406
  • [29] Interior-point methods for Cartesian P*(κ)-linear complementarity problems over symmetric cones based on the eligible kernel functions
    Lesaja, G.
    Wang, G. Q.
    Zhu, D. T.
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (4-5): : 827 - 843
  • [30] Differential recursion relations for Laguerre functions on symmetric cones
    Aristidou, M
    Davidson, M
    Olafsson, G
    BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (03): : 246 - 263