Assessment of the Global Variance Effective Size of Subdivided Populations, and Its Relation to Other Effective Sizes

被引:0
|
作者
Ola Hössjer
Linda Laikre
Nils Ryman
机构
[1] Stockholm University,Division of Mathematical Statistics, Department of Mathematics
[2] Stockholm University,Division of Population Genetics, Department of Zoology
来源
Acta Biotheoretica | 2023年 / 71卷
关键词
Genetic diversity; Length of time interval; Matrix analytic recursions; Metapopulation; Migration–drift equilibrium; Perturbation theory of matrices; Variance effective size; 60J28; 92D10; 92D15; 92D20;
D O I
暂无
中图分类号
学科分类号
摘要
The variance effective population size (NeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{eV}$$\end{document}) is frequently used to quantify the expected rate at which a population’s allele frequencies change over time. The purpose of this paper is to find expressions for the global NeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{eV}$$\end{document} of a spatially structured population that are of interest for conservation of species. Since NeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{eV}$$\end{document} depends on allele frequency change, we start by dividing the cause of allele frequency change into genetic drift within subpopulations (I) and a second component mainly due to migration between subpopulations (II). We investigate in detail how these two components depend on the way in which subpopulations are weighted as well as their dependence on parameters of the model such a migration rates, and local effective and census sizes. It is shown that under certain conditions the impact of II is eliminated, and NeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{eV}$$\end{document} of the metapopulation is maximized, when subpopulations are weighted proportionally to their long term reproductive contributions. This maximal NeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{eV}$$\end{document} is the sought for global effective size, since it approximates the gene diversity effective size NeGD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{eGD}$$\end{document}, a quantifier of the rate of loss of genetic diversity that is relevant for conservation of species and populations. We also propose two novel versions of NeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{eV}$$\end{document}, one of which (the backward version of NeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{eV}$$\end{document}) is most stable, exists for most populations, and is closer to NeGD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{eGD}$$\end{document} than the classical notion of NeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{eV}$$\end{document}. Expressions for the optimal length of the time interval for measuring genetic change are developed, that make it possible to estimate any version of NeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{eV}$$\end{document} with maximal accuracy.
引用
收藏
相关论文
共 50 条
  • [21] The effective size of bryophyte populations
    Bengtsson, Bengt O.
    Cronberg, Nils
    JOURNAL OF THEORETICAL BIOLOGY, 2009, 258 (01) : 121 - 126
  • [22] Samples from subdivided populations yield biased estimates of effective size that overestimate the rate of loss of genetic variation
    Ryman, Nils
    Allendorf, Fred W.
    Jorde, Per Erik
    Laikre, Linda
    Hossjer, Ola
    MOLECULAR ECOLOGY RESOURCES, 2014, 14 (01) : 87 - 99
  • [23] A new general analytical approach for modeling patterns of genetic differentiation and effective size of subdivided populations over time
    Hossjer, Ola
    Olsson, Fredrik
    Laikre, Linda
    Ryman, Nils
    MATHEMATICAL BIOSCIENCES, 2014, 258 : 113 - 133
  • [24] Large global effective population sizes in Paramecium
    Snoke, Margaret S.
    Berendonk, Thomas U.
    Barth, Dana
    Lynch, Michael
    MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (12) : 2474 - 2479
  • [25] Variance Effective Population Size for Dioecious Species
    Vencovsky, Roland
    Chaves, Lazaro Jose
    Crossa, Jose
    CROP SCIENCE, 2012, 52 (01) : 79 - 90
  • [26] Supportive breeding and variance effective population size
    Ryman, N
    Jorde, PE
    Laikre, L
    CONSERVATION BIOLOGY, 1995, 9 (06) : 1619 - 1628
  • [27] Variance effective population size for mitochondrial genes
    Zaykin, DV
    Pudovkin, AI
    RUSSIAN JOURNAL OF GENETICS, 2000, 36 (08) : 965 - 967
  • [28] EFFECTIVE SIZES OF LIVESTOCK POPULATIONS TO PREVENT A DECLINE IN FITNESS
    MEUWISSEN, THE
    WOOLLIAMS, JA
    THEORETICAL AND APPLIED GENETICS, 1994, 89 (7-8) : 1019 - 1026
  • [29] On the eigenvalue effective size of structured populations
    Hossjer, Ola
    JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 71 (03) : 595 - 646
  • [30] Effective size of fluctuating salmon populations
    Waples, RS
    GENETICS, 2002, 161 (02) : 783 - 791