Infinitely Many Solutions for Critical Degenerate Kirchhoff Type Equations Involving the Fractional p–Laplacian

被引:0
|
作者
Zhang Binlin
Alessio Fiscella
Sihua Liang
机构
[1] Heilongjiang Institute of Technology,Department of Mathematics
[2] Universidade Estadual de Campinas,Departamento de Matemática
[3] IMECC,College of Mathematics
[4] Changchun Normal University,undefined
来源
关键词
Fractional ; –Laplacian; Degenerate Kirchhoff equations; Critical Sobolev exponent; Variational methods; 35J60; 35R11; 35A15; 47G20; 49J35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study a class of critical Kirchhoff type equations involving the fractional p–Laplacian operator, that is M∫∫R2N|u(x)-u(y)|p|x-y|N+psdxdy(-Δ)psu=λw(x)|u|q-2u+|u|ps∗-2u,x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \begin{array}{ll} \displaystyle M\left( \iint _{{\mathbb {R}}^{2N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy\right) (-\Delta )_p^{s} u {=} \lambda w(x)|u|^{q-2}u + |u|^{ p_s^{*}-2 }u,\quad x\in {\mathbb {R}}^N, \end{array} \end{aligned}$$\end{document}where (-Δ)ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\,\Delta )^s_p$$\end{document} is the fractional p–Laplacian operator with 0<s<1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1<p<\infty $$\end{document}, dimension N>ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>ps$$\end{document}, 1<q<ps∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<p^{*}_{s}$$\end{document}, ps∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{*}_s$$\end{document} is the critical exponent of the fractional Sobolev space Ws,p(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s,p}({\mathbb {R}}^N)$$\end{document}, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is a positive parameter, M is a non-negative function while w is a positive weight. By exploiting Kajikiya’s new version of the symmetric mountain pass lemma, we establish the existence of infinitely many solutions which tend to zero under a suitable value of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. The main feature and difficulty of our equations is the fact that the Kirchhoff term M is zero at zero, that is the equation is degenerate. To our best knowledge, our results are new even in the Laplacian and p–Laplacian cases.
引用
收藏
页码:63 / 80
页数:17
相关论文
共 50 条