Infinitely Many Solutions for Schrödinger–Kirchhoff-Type Equations Involving the Fractional p(x, ·)-Laplacian

被引:0
|
作者
机构
[1] Department of Mathematics Education,
[2] Farhangian University,undefined
来源
Russian Mathematics | 2023年 / 67卷
关键词
fractional ; -Laplacian; Schrödinger–Kirchhoff-type problem; variational methods;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:67 / 77
页数:10
相关论文
共 50 条
  • [1] Infinitely Many Solutions for Schr?dinger–Choquard–Kirchhoff Equations Involving the Fractional p-Laplacian
    Li WANG
    Tao HAN
    Ji Xiu WANG
    [J]. Acta Mathematica Sinica,English Series, 2021, 37 (02) : 315 - 332
  • [2] Infinitely Many Solutions for Schrödinger-Choquard-Kirchhoff Equations Involving the Fractional p-Laplacian
    Li Wang
    Tao Han
    Ji Xiu Wang
    [J]. Acta Mathematica Sinica, English Series, 2021, 37 : 315 - 332
  • [3] Infinitely Many Solutions for Sublinear Schrödinger–Kirchhoff-Type Equations With General Potentials
    Lian Duan
    Lihong Huang
    [J]. Results in Mathematics, 2014, 66 : 181 - 197
  • [4] Infinitely Many Solutions for Schrodinger-Kirchhoff-Type Equations Involving the Fractional p(x, •)-Laplacian
    Mirzapour, Maryam
    [J]. RUSSIAN MATHEMATICS, 2023, 67 (08) : 67 - 77
  • [5] Infinitely Many Solutions for Critical Degenerate Kirchhoff Type Equations Involving the Fractional p–Laplacian
    Zhang Binlin
    Alessio Fiscella
    Sihua Liang
    [J]. Applied Mathematics & Optimization, 2019, 80 : 63 - 80
  • [6] Infinitely many solutions for a class of critical Kirchhoff-type equations involving p-Laplacian operator
    Anran Li
    Dandan Fan
    Chongqing Wei
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [7] Infinitely many solutions for a class of critical Kirchhoff-type equations involving p-Laplacian operator
    Li, Anran
    Fan, Dandan
    Wei, Chongqing
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [8] Existence of infinitely many solutions for fractional p-Laplacian Schrödinger–Kirchhoff type equations with sign-changing potential
    Youpei Zhang
    Xianhua Tang
    Jian Zhang
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 569 - 586
  • [9] Infinitely many homoclinic solutions for fractional discrete Kirchhoff–Schrödinger equations
    Chunming Ju
    Giovanni Molica Bisci
    Binlin Zhang
    [J]. Advances in Continuous and Discrete Models, 2023
  • [10] Infinitely Many Solutions for Critical Degenerate Kirchhoff Type Equations Involving the Fractional p-Laplacian
    Binlin, Zhang
    Fiscella, Alessio
    Liang, Sihua
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (01): : 63 - 80