Single-image super-resolution using kernel recursive least squares

被引:0
|
作者
Jesna Anver
P. Abdulla
机构
[1] Cochin University of Science and Technology,Division of Electronics, School of Engineering
来源
关键词
Super-resolution; Approximate linear dependence kernel recursive least square; Sliding window kernel recursive least square; Kernel ; -means;
D O I
暂无
中图分类号
学科分类号
摘要
Online single-image super-resolution of an image has been obtained here. The high-resolution image is constructed from a dictionary of features that approximately spans the subspace of regression. This paper classifies the low-resolution image using the kernel k-means clustering algorithm and makes an extensive study using the approximate linear dependence kernel recursive least square and sliding window kernel recursive least squares for super-resolving the image from the existing low- and high-resolution images. The super-resolution using kernel recursive least square significantly provides an improvement up on the support vector regression solution, both in terms of speed, dictionary samples and also gives a better PSNR value.
引用
收藏
页码:1551 / 1558
页数:7
相关论文
共 50 条
  • [21] Rectified Binary Network for Single-Image Super-Resolution
    Xin, Jingwei
    Wang, Nannan
    Jiang, Xinrui
    Li, Jie
    Wang, Xiaoyu
    Gao, Xinbo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [22] Single-image super-resolution via local learning
    Yi Tang
    Pingkun Yan
    Yuan Yuan
    Xuelong Li
    International Journal of Machine Learning and Cybernetics, 2011, 2 : 15 - 23
  • [23] EXTERNAL AND INTERNAL LEARNING FOR SINGLE-IMAGE SUPER-RESOLUTION
    Wang, Shuang
    Lin, Shaopeng
    Liang, Xuefeng
    Yue, Bo
    Jiao, Licheng
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 128 - 132
  • [24] PERCEPTUAL EVALUATION OF SINGLE-IMAGE SUPER-RESOLUTION RECONSTRUCTION
    Wang, Guangcheng
    Li, Leida
    Li, Qiaohong
    Gu, Ke
    Lu, Zhaolin
    Qian, Jiansheng
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3145 - 3149
  • [25] Multilevel and Multiscale Network for Single-Image Super-Resolution
    Yang, Yong
    Zhang, Dongyang
    Huang, Shuying
    Wu, Jiajun
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (12) : 1877 - 1881
  • [26] Improving Single-Image Super-Resolution with Dilated Attention
    Zhang, Xinyu
    Cheng, Boyuan
    Yang, Xiaosong
    Xiao, Zhidong
    Zhang, Jianjun
    You, Lihua
    ELECTRONICS, 2024, 13 (12)
  • [27] Collaborative Representation Cascade for Single-Image Super-Resolution
    Zhang, Yongbing
    Zhang, Yulun
    Zhang, Jian
    Xu, Dong
    Fu, Yun
    Wang, Yisen
    Ji, Xiangyang
    Dai, Qionghai
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (05): : 845 - 860
  • [28] FAST SINGLE-IMAGE SUPER-RESOLUTION WITH FILTER SELECTION
    Salvador, Jordi
    Perez-Pellitero, Eduardo
    Kochale, Axel
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 640 - 644
  • [29] LOCAL OPERATOR ESTIMATION FOR SINGLE-IMAGE SUPER-RESOLUTION
    Tang, Yi
    Chen, Hong
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2015, : 39 - 44
  • [30] An adaptive regression based single-image super-resolution
    Hou, Mingzheng
    Feng, Ziliang
    Wang, Haobo
    Shen, Zhiwei
    Li, Sheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (20) : 28231 - 28248