Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes

被引:0
|
作者
Koichiro Yasaka
Tomoya Tanishima
Yuta Ohtake
Taku Tajima
Hiroyuki Akai
Kuni Ohtomo
Osamu Abe
Shigeru Kiryu
机构
[1] The University of Tokyo Hospital,Department of Radiology
[2] International University of Health and Welfare Narita Hospital,Department of Radiology
[3] International University of Health and Welfare Mita Hospital,Department of Radiology
[4] The University of Tokyo,Department of Radiology, The Institute of Medical Science
[5] International University of Health and Welfare,undefined
来源
European Radiology | 2022年 / 32卷
关键词
Artificial intelligence; Deep learning; Magnetic resonance imaging; Cervical vertebrae; Neurodegenerative diseases;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:6118 / 6125
页数:7
相关论文
共 50 条
  • [21] Deep learning–based reconstruction for acceleration of lumbar spine MRI: a prospective comparison with standard MRI
    Hyunsuk Yoo
    Roh-Eul Yoo
    Seung Hong Choi
    Inpyeong Hwang
    Ji Ye Lee
    June Young Seo
    Seok Young Koh
    Kyu Sung Choi
    Koung Mi Kang
    Tae Jin Yun
    European Radiology, 2023, 33 : 8656 - 8668
  • [22] ACUTE CERVICAL-SPINE TRAUMA - EVALUATION WITH 1.5-T MR IMAGING
    MIRVIS, SE
    GEISLER, FH
    JELINEK, JJ
    JOSLYN, JN
    GELLAD, F
    RADIOLOGY, 1988, 166 (03) : 807 - 816
  • [23] MRI evaluation of foraminal changes in the cervical spine with assistance of a novel compression device
    Hutchins, J.
    Lagerstrand, K.
    Stavlid, E.
    Svensson, P-A
    Rennerfelt, K.
    Hebelka, H.
    Brisby, H.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [24] MRI evaluation of foraminal changes in the cervical spine with assistance of a novel compression device
    J. Hutchins
    K. Lagerstrand
    E. Stävlid
    P-A. Svensson
    K. Rennerfelt
    H. Hebelka
    H. Brisby
    Scientific Reports, 13
  • [25] Verification of image quality improvement by deep learning reconstruction to 1.5 T MRI in T2-weighted images of the prostate gland
    Sato, Yoshiomi
    Ohkuma, Kiyoshi
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (03) : 756 - 764
  • [26] Deep learning-based reconstruction for acceleration of lumbar spine MRI: a prospective comparison with standard MRI
    Yoo, Hyunsuk
    Yoo, Roh-Eul
    Choi, Seung Hong
    Hwang, Inpyeong
    Lee, Ji Ye
    Seo, June Young
    Koh, Seok Young
    Choi, Kyu Sung
    Kang, Koung Mi
    Yun, Tae Jin
    EUROPEAN RADIOLOGY, 2023, 33 (12) : 8656 - 8668
  • [27] Impact of deep learning reconstruction on intracranial 1.5 T magnetic resonance angiography
    Koichiro Yasaka
    Hiroyuki Akai
    Haruto Sugawara
    Taku Tajima
    Masaaki Akahane
    Naoki Yoshioka
    Hiroyuki Kabasawa
    Rintaro Miyo
    Kuni Ohtomo
    Osamu Abe
    Shigeru Kiryu
    Japanese Journal of Radiology, 2022, 40 : 476 - 483
  • [28] Impact of deep learning reconstruction on intracranial 1.5 T magnetic resonance angiography
    Yasaka, Koichiro
    Akai, Hiroyuki
    Sugawara, Haruto
    Tajima, Taku
    Akahane, Masaaki
    Yoshioka, Naoki
    Kabasawa, Hiroyuki
    Miyo, Rintaro
    Ohtomo, Kuni
    Abe, Osamu
    Kiryu, Shigeru
    JAPANESE JOURNAL OF RADIOLOGY, 2022, 40 (05) : 476 - 483
  • [29] Deep learning reconstruction of zero-echo time sequences to improve visualization of osseous structures and associated pathologies in MRI of cervical spine
    Kaniewska, Malwina
    Zecca, Fabio
    Obermuller, Carina
    Ensle, Falko
    Deininger-Czermak, Eva
    Lohezic, Maelene
    Guggenberger, Roman
    INSIGHTS INTO IMAGING, 2025, 16 (01):
  • [30] Super-resolution Deep Learning Reconstruction Enhances Cranial Nerve Depiction and Interobserver Agreement in Neurovascular Conflict Imaging
    Li, Yajie
    Wu, Shiman
    ACADEMIC RADIOLOGY, 2024, 31 (12) : 5128 - 5129