Optimization of Cr (VI) removal from aqueous solution with activated carbon derived from Eichhornia crassipes under response surface methodology

被引:0
|
作者
Jemal Fito
Solomon Tibebu
Thabo T. I. Nkambule
机构
[1] University of South Africa,Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus
[2] Addis Ababa Science and Technology University,Department of Environmental Engineering, College of Biological and Chemical Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence
来源
BMC Chemistry | / 17卷
关键词
Adsorbent; Environment; Effluent; Removal; Pollutant; Treatment performance;
D O I
暂无
中图分类号
学科分类号
摘要
Tannery industries’ effluent contains a high concentration of Cr (VI) which has the potential to affect the environment and public health. Therefore, this study aimed to investigate the optimization of Cr (VI) adsorption by activated carbon (AC) derived from Eichhornia crassipes from an aqueous solution. The adsorbent was activated with dilute sulfuric acid followed by thermal activation. AC was characterized using proximate analysis, SEM, FTIR, X-ray diffraction, and the BET method. The Cr (VI) removal optimization process was performed using a central composite design under the response surface methodology. The proximate analysis showed that the moisture content, volatile matter, ash content, and fixed carbon of the activated carbon were 5.6%, 18.2%, 14.4%, and 61.8% respectively. The surface areas of the Eichhornia crassipes before activation, after activation, and after adsorption were 60.6 g/m2, 794.2 g/m2, and 412.6 g/m2 respectively. A highly porous structure with heterogeneous and irregular shapes was observed in the SEM micrograph. In the FTIR analysis, different peaks are indicated with various functional groups. The intensity of XRD peaks decreased as 2 theta values increased, which indicates the presence of an amorphous carbon arrangement. The point of zero charge (pHpzc) of the activated carbon was found to be 5.20. A maximum Cr (VI) removal of 98.4% was achieved at pH 5, contact time 90 min, adsorbent dose 2 g, and initial Cr (VI) concentration of 2.25 mg/L. Statistically significant interactions (P < 0.05) were observed between the initial Cr (VI) concentration and adsorbent dose as well as the initial Cr (VI) concentration and contact time. Langmuir adsorption isotherm fitted the experimental data best, with an R2 value of 0.99. The separation constant (RL) indicates that the adsorption process is favorable. The kinetic experimental data were best fitted with the pseudo-second-order model with an R2 value of 0.99 whereas the adsorption rate is controlled by intraparticle and extragranular diffusion processes. Generally, the AC has the potential to be a strong adsorbent candidate for wastewater treatment at the industrial level.
引用
下载
收藏
相关论文
共 50 条
  • [31] REMOVAL OF Cr(VI) FROM AQUEOUS SOLUTION BY HAZELNUT HUSK CARBON
    Aydemir, Ferhat
    Altundag, Huseyin
    Imamoglu, Mustafa
    FRESENIUS ENVIRONMENTAL BULLETIN, 2012, 21 (11C): : 3589 - 3594
  • [32] Removal of Cr(VI) from aqueous solution by a commercial carbon black
    Radjenovic, Ankica
    Medunic, Gordana
    DESALINATION AND WATER TREATMENT, 2015, 55 (01) : 183 - 192
  • [33] Removal of reactive blue 19 from aqueous solution by pomegranate residual-based activated carbon: optimization by response surface methodology
    Elham Radaei
    Mohammad Reza Alavi Moghaddam
    Mokhtar Arami
    Journal of Environmental Health Science and Engineering, 12
  • [34] Removal of reactive blue 19 from aqueous solution by pomegranate residual-based activated carbon: optimization by response surface methodology
    Radaei, Elham
    Moghaddam, Mohammad Reza Alavi
    Arami, Mokhtar
    JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING, 2014, 12
  • [35] Highly surface activated carbon to remove Cr(VI) from aqueous solution with adsorbent recycling
    Fang, Yi
    Yang, Ke
    Zhang, Yipeng
    Peng, Changsheng
    Robledo-Cabrera, Aurora
    Lopez-Valdivieso, Alejandro
    ENVIRONMENTAL RESEARCH, 2021, 197
  • [36] Optimization of Removal of Cr(VI) from Wastewater by Electrocoagulation Process Using Response Surface Methodology
    Kumar, Amit
    Basu, Debolina
    JOURNAL OF HAZARDOUS TOXIC AND RADIOACTIVE WASTE, 2023, 27 (01)
  • [37] Cr(VI) removal from aqueous solution by dried activated sludge biomass
    Wu, Jun
    Zhang, Hua
    He, Pin-Jing
    Yao, Qian
    Shao, Li-Ming
    JOURNAL OF HAZARDOUS MATERIALS, 2010, 176 (1-3) : 697 - 703
  • [38] Enhanced removal of Cr (VI) from aqueous solution by mesoporous activated carbons
    Fan, Mingxia
    Tong, Shitang
    Jia, Charles Q.
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2014, 8 (04) : 489 - 499
  • [39] Optimization of Paracetamol and Chloramphenicol Removal by Novel Activated Carbon Derived from Sawdust Using Response Surface Methodology
    Romdhani, Mohamed
    Attia, Afef
    Charcosset, Catherine
    Mahouche-Chergui, Samia
    Ates, Ayten
    Duplay, Joelle
    Amar, Raja Ben
    SUSTAINABILITY, 2023, 15 (03)
  • [40] Removal of Reactive Orange 4 from Aqueous Solution by Waste Eichhornia crassipes Biomass
    Renganathan, S.
    Gautam, P.
    CHEMICAL PRODUCT AND PROCESS MODELING, 2008, 3 (02):