This paper is concerned with perturbation problems of regularity linear systems. Two types of perturbation results are proved: (i) the perturbed system (A + P, B, C) generates a regular linear system provided both (A, B, C) and (A, B, P) generate regular linear systems; and (ii) the perturbed system \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${((A_{-1}+\Delta A)|_X,B,C^A_\Lambda)}$$\end{document} generates a regular linear system if both (A, B, C) and (A, ΔA, C) generate regular linear systems. These allow us to establish a new variation of constants formula of the control system (A + P, B). Moreover, these results are applied to the linear systems with state and output delays. The regularity and the mild expressibility is deduced, and a necessary and sufficient condition for stabilizability of the delayed systems is proved.