Exploration of a singular fluid spacetime

被引:0
|
作者
Grant N. Remmen
机构
[1] University of California,Department of Physics, Kavli Institute for Theoretical Physics
来源
关键词
Perfect fluid solutions; Tidal Love numbers; Dilaton solutions; Naked singularities;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the properties of a special class of singular solutions for a self-gravitating perfect fluid in general relativity: the singular isothermal sphere. For arbitrary constant equation-of-state parameter w=p/ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w=p/\rho $$\end{document}, there exist static, spherically-symmetric solutions with density profile ∝1/r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\propto 1/r^2$$\end{document}, with the constant of proportionality fixed to be a special function of w. Like black holes, singular isothermal spheres possess a fixed mass-to-radius ratio independent of size, but no horizon cloaking the curvature singularity at r=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0$$\end{document}. For w=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w=1$$\end{document}, these solutions can be constructed from a homogeneous dilaton background, where the metric spontaneously breaks spatial homogeneity. We study the perturbative structure of these solutions, finding the radial modes and tidal Love numbers, and also find interesting properties in the geodesic structure of this geometry. Finally, connections are discussed between these geometries and dark matter profiles, the double copy, and holographic entropy, as well as how the swampland distance conjecture can obscure the naked singularity.
引用
收藏
相关论文
共 50 条
  • [21] Group analysis of a conformal perfect fluid spacetime
    Govinder, K. S.
    Hansraj, S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (15)
  • [22] Fluid dynamics in the warp drive spacetime geometry
    Santos-Pereira, Osvaldo L.
    Abreu, Everton M. C.
    Ribeiro, Marcelo B.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (02):
  • [23] Spacetime algebra for the reformulation of fluid field equations
    Demir, Suleyman
    Tanisli, Murat
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (05)
  • [24] Black hole in closed spacetime with an anisotropic fluid
    Kim, Hyeong-Chan
    [J]. PHYSICAL REVIEW D, 2017, 96 (06)
  • [25] Singular limits in fluid mechanics
    Constantin, P
    [J]. CURRENT AND FUTURE DIRECTIONS IN APPLIED MATHEMATICS, 1997, : 109 - 136
  • [26] SINGULAR EVOLUTION OF A PERFECT FLUID
    POMEAU, Y
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1995, 321 (10): : 407 - 411
  • [27] Spacetime completeness of non-singular black holes in conformal gravity
    Bambi, Cosimo
    Modesto, Leonardo
    Rachwal, Leslaw
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (05):
  • [28] T-duality of singular spacetime compactifications in an H-flux
    Linshaw, Andrew
    Mathai, Varghese
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 129 : 269 - 278
  • [29] A spacetime structure exploration plan in the earth-moon system
    Jiang, Dong
    Peng, Wang
    Gong, Hu Xiao
    Jie, Du Yuan
    Jian, Cao Zhou
    Yan, Zhang
    Ming, Xu
    Ming, Lee
    Ying, Zhang Zhong
    Tao, Shuai
    Liang, Liu
    [J]. 15TH MARCEL GROSSMANN MEETING, PT A, 2022, : 1977 - 1982
  • [30] Perfect fluid metrics conformal to the Schwarzschild exterior spacetime
    Sudan Hansraj
    [J]. General Relativity and Gravitation, 2012, 44 : 125 - 138