Exploration of a singular fluid spacetime

被引:0
|
作者
Grant N. Remmen
机构
[1] University of California,Department of Physics, Kavli Institute for Theoretical Physics
来源
关键词
Perfect fluid solutions; Tidal Love numbers; Dilaton solutions; Naked singularities;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the properties of a special class of singular solutions for a self-gravitating perfect fluid in general relativity: the singular isothermal sphere. For arbitrary constant equation-of-state parameter w=p/ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w=p/\rho $$\end{document}, there exist static, spherically-symmetric solutions with density profile ∝1/r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\propto 1/r^2$$\end{document}, with the constant of proportionality fixed to be a special function of w. Like black holes, singular isothermal spheres possess a fixed mass-to-radius ratio independent of size, but no horizon cloaking the curvature singularity at r=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0$$\end{document}. For w=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w=1$$\end{document}, these solutions can be constructed from a homogeneous dilaton background, where the metric spontaneously breaks spatial homogeneity. We study the perturbative structure of these solutions, finding the radial modes and tidal Love numbers, and also find interesting properties in the geodesic structure of this geometry. Finally, connections are discussed between these geometries and dark matter profiles, the double copy, and holographic entropy, as well as how the swampland distance conjecture can obscure the naked singularity.
引用
收藏
相关论文
共 50 条
  • [1] Exploration of a singular fluid spacetime
    Remmen, Grant N.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2021, 53 (11)
  • [2] A singular conformal spacetime
    Aldrovandi, R.
    Beltran Almeida, J. P.
    Pereira, J. G.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (06) : 1042 - 1056
  • [3] The singular nature of spacetime
    Lam, Vincent
    [J]. PHILOSOPHY OF SCIENCE, 2007, 74 (05) : 712 - 723
  • [4] Singular spacetime and quantum probe
    Piechocki, W
    [J]. PHYSICS LETTERS B, 2002, 526 (1-2) : 127 - 131
  • [5] Accelerated observers and the notion of singular spacetime
    Olmo, Gonzalo J.
    Rubiera-Garcia, Diego
    Sanchez-Puente, Antonio
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (05)
  • [6] FIRST SINGULAR HOMOLOGY GROUP OF SPACETIME
    Agrawal, Gunjan
    Pathak, Roma
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2019, 84 (02) : 245 - 252
  • [7] Sufficient conditions for a pseudosymmetric spacetime to be a perfect fluid spacetime
    Zhao, Peibiao
    De, Uday Chand
    Unal, Bulent
    De, Krishnendu
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (13)
  • [8] A duality relation for fluid spacetime
    Dadhich, N
    Patel, LK
    Tikekar, R
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (04) : L27 - L29
  • [9] Weak and singular solutions of the wave equation in curved spacetime
    Gemelli, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (26): : 8527 - 8541
  • [10] Singular spacetime Ito's integral and a class of singular interacting branching particle systems
    Wang, H
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2003, 6 (02) : 321 - 335