A Branch-and-Bound Approach for Estimating Covering Functionals of Convex Bodies

被引:0
|
作者
Chan He
Yafang Lv
Horst Martini
Senlin Wu
机构
[1] North University of China,School of Mathematics
[2] Technische Universität Chemnitz,Fakultät für Mathematik
关键词
Branch-and-bound; Convex body; Covering functional; Hadwiger’s covering problem; 52C17; 52A37;
D O I
暂无
中图分类号
学科分类号
摘要
Estimating covering functionals of convex bodies is not only interesting for its own, but also an important part of Chuanming Zong’s program to attack Hadwiger’s covering conjecture, a long-standing open problem from Discrete and Combinatorial Geometry. In general, it is difficult to determine exact values of the covering functionals of a convex body by theoretical analysis. Therefore we propose a global optimization algorithm based on the geometric branch-and-bound method. Numerical experiments have been carried out to estimate covering functionals of the Euclidean unit disc.
引用
收藏
页码:1036 / 1055
页数:19
相关论文
共 50 条
  • [1] A Branch-and-Bound Approach for Estimating Covering Functionals of Convex Bodies
    He, Chan
    Lv, Yafang
    Martini, Horst
    Wu, Senlin
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 196 (03) : 1036 - 1055
  • [2] On covering functionals of convex bodies
    He, Chan
    Martini, Horst
    Wu, Senlin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (02) : 1236 - 1256
  • [3] Estimating the Size of Branch-and-Bound Trees
    Hendel, Gregor
    Anderson, Daniel
    Le Bodic, Pierre
    Pfetschd, Marc E.
    [J]. INFORMS JOURNAL ON COMPUTING, 2022, 34 (02) : 934 - 952
  • [4] An Algorithm Based on Compute Unified Device Architecture for Estimating Covering Functionals of Convex Bodies
    Han, Xiangyang
    Wu, Senlin
    Zhang, Longzhen
    [J]. AXIOMS, 2024, 13 (02)
  • [5] Performance of convex underestimators in a branch-and-bound framework
    Guzman, Yannis A.
    Hasan, M. M. Faruque
    Floudas, Christodoulos A.
    [J]. OPTIMIZATION LETTERS, 2016, 10 (02) : 283 - 308
  • [6] Performance of convex underestimators in a branch-and-bound framework
    Yannis A. Guzman
    M. M. Faruque Hasan
    Christodoulos A. Floudas
    [J]. Optimization Letters, 2016, 10 : 283 - 308
  • [7] A Branch-and-Bound Algorithm for the Molecular Ordered Covering Problem
    Souza, Michael
    Maia, Nilton
    Marques, Romulo S.
    Lavor, Carlile
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2024, 31 (06) : 475 - 485
  • [8] Negative thinking in branch-and-bound: The case of unate covering
    Goldberg, EI
    Carloni, LP
    Villa, T
    Brayton, RK
    Sangiovanni-Vincentelli, AL
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2000, 19 (03) : 281 - 294
  • [9] BRANCH-AND-BOUND DECOMPOSITION APPROACH FOR SOLVING QUASI-CONVEX CONCAVE PROGRAMS
    HORST, R
    MUU, LD
    NAST, M
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 82 (02) : 267 - 293
  • [10] Construction of the convex hulls of functions for the branch-and-bound method
    Lazebnik, AI
    Tsallagova, ON
    [J]. AUTOMATION AND REMOTE CONTROL, 1998, 59 (04) : 575 - 580