Performance of convex underestimators in a branch-and-bound framework

被引:0
|
作者
Yannis A. Guzman
M. M. Faruque Hasan
Christodoulos A. Floudas
机构
[1] Princeton University,Department of Chemical and Biological Engineering
[2] Texas A&M University,Artie McFerrin Department of Chemical Engineering
来源
Optimization Letters | 2016年 / 10卷
关键词
Global optimization; Convex underestimators; Branch-and-bound;
D O I
暂无
中图分类号
学科分类号
摘要
The efficient determination of tight lower bounds in a branch-and-bound algorithm is crucial for the global optimization of models spanning numerous applications and fields. The global optimization method α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-branch-and-bound (α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}BB, Adjiman et al. in Comput Chem Eng 22(9):1159–1179, 1998b, Comput Chem Eng 22(9):1137–1158, 1998a; Adjiman and Floudas in J Global Optim 9(1):23–40, 1996; Androulakis et al. J Global Optim 7(4):337–363, 1995; Floudas in Deterministic Global Optimization: Theory, Methods and Applications, vol. 37. Springer, Berlin, 2000; Maranas and Floudas in J Chem Phys 97(10):7667–7678, 1992, J Chem Phys 100(2):1247–1261, 1994a, J Global Optim 4(2):135–170, 1994), guarantees a global optimum with ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-convergence for any C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}^2$$\end{document}-continuous function within a finite number of iterations via fathoming nodes of a branch-and-bound tree. We explored the performance of the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}BB method and a number of competing methods designed to provide tight, convex underestimators, including the piecewise (Meyer and Floudas in J Global Optim 32(2):221–258, 2005), generalized (Akrotirianakis and Floudas in J Global Optim 30(4):367–390, 2004a, J Global Optim 29(3):249–264, 2004b), and nondiagonal (Skjäl et al. in J Optim Theory Appl 154(2):462–490, 2012) α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}BB methods, the Brauer and Rohn+E (Skjäl et al. in J Global Optim 58(3):411–427, 2014) α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}BB methods, and the moment method (Lasserre and Thanh in J Global Optim 56(1):1–25, 2013). Using a test suite of 40 multivariate, box-constrained, nonconvex functions, the methods were compared based on the tightness of generated underestimators and the efficiency of convergence of a branch-and-bound global optimization algorithm.
引用
收藏
页码:283 / 308
页数:25
相关论文
共 50 条
  • [1] Performance of convex underestimators in a branch-and-bound framework
    Guzman, Yannis A.
    Hasan, M. M. Faruque
    Floudas, Christodoulos A.
    [J]. OPTIMIZATION LETTERS, 2016, 10 (02) : 283 - 308
  • [2] Construction of the convex hulls of functions for the branch-and-bound method
    Lazebnik, AI
    Tsallagova, ON
    [J]. AUTOMATION AND REMOTE CONTROL, 1998, 59 (04) : 575 - 580
  • [3] EXPECTED PERFORMANCE OF BRANCH-AND-BOUND ALGORITHMS
    LENSTRA, JK
    RINNOOYKAN, AHG
    [J]. OPERATIONS RESEARCH, 1978, 26 (02) : 347 - 349
  • [4] A Framework for Certified Boolean Branch-and-Bound Optimization
    Larrosa, Javier
    Nieuwenhuis, Robert
    Oliveras, Albert
    Rodriguez-Carbonell, Enric
    [J]. JOURNAL OF AUTOMATED REASONING, 2011, 46 (01) : 81 - 102
  • [5] A Framework for Certified Boolean Branch-and-Bound Optimization
    Javier Larrosa
    Robert Nieuwenhuis
    Albert Oliveras
    Enric Rodríguez-Carbonell
    [J]. Journal of Automated Reasoning, 2011, 46 : 81 - 102
  • [6] PERFORMANCE OF PARALLEL BRANCH-AND-BOUND ALGORITHMS
    LAI, TH
    SPRAGUE, A
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1985, 34 (10) : 962 - 964
  • [7] Performance analysis of branch-and-bound skeletons
    Dorta, I
    León, C
    Rodríguez, C
    [J]. PROCEEDINGS OF THE 14TH EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING, 2005, : 75 - 82
  • [8] Performance analysis of Branch-and-Bound skeletons
    Dorta, I.
    Leon, C.
    Rodriguez, C.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (3-4) : 300 - 308
  • [9] An effective branch-and-bound algorithm for convex quadratic integer programming
    Christoph Buchheim
    Alberto Caprara
    Andrea Lodi
    [J]. Mathematical Programming, 2012, 135 : 369 - 395
  • [10] A Branch-and-Bound Approach for Estimating Covering Functionals of Convex Bodies
    He, Chan
    Lv, Yafang
    Martini, Horst
    Wu, Senlin
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 196 (03) : 1036 - 1055