Global Smooth Solutions to the 3D Compressible Viscous Non-Isentropic Magnetohydrodynamic Flows Without Magnetic Diffusion

被引:0
|
作者
Yongsheng Li
Huan Xu
Xiaoping Zhai
机构
[1] South China University of Technology,School of Mathematics
[2] The University of Texas at San Antonio,Department of Mathematics
[3] Guangdong University of Technology,School of Mathematics and Statistics
来源
关键词
Global smooth solutions; Non-resistive MHD; Diophantine condition; 35Q35; 76N10; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
How to construct the global smooth solutions to the compressible viscous, non-isentropic, non-resistive magnetohydrodynamic equations in T3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}^3$$\end{document} appears to be unknown. In this paper, we give a positive answer to this problem. More precisely, we prove a global stability result on perturbations near a strong background magnetic field to the 3D compressible viscous, non-isentropic, non-resistive magnetohydrodynamic equations. This stability result provides a significant example of the stabilizing effect of the magnetic field on electrically conducting fluids. In addition, we obtain an explicit decay rate for the solutions to this nonlinear system.
引用
收藏
相关论文
共 50 条
  • [1] Global Smooth Solutions to the 3D Compressible Viscous Non-Isentropic Magnetohydrodynamic Flows Without Magnetic Diffusion
    Li, Yongsheng
    Xu, Huan
    Zhai, Xiaoping
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (08)
  • [2] On global solutions to the 3D viscous, compressible, and heat-conducting magnetohydrodynamic flows
    Mingyu Zhang
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [3] On global solutions to the 3D viscous, compressible, and heat-conducting magnetohydrodynamic flows
    Zhang, Mingyu
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05):
  • [4] Global strong solutions to the 3D compressible non-isentropic MHD equations with zero resistivity
    Jishan Fan
    Fucai Li
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [5] TIME PERIODIC SOLUTIONS OF NON-ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM
    许秋菊
    蔡虹
    谭忠
    [J]. Acta Mathematica Scientia, 2015, (01) : 216 - 234
  • [6] Global strong solutions to the 3D compressible non-isentropic MHD equations with zero resistivity
    Fan, Jishan
    Li, Fucai
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (02):
  • [7] TIME PERIODIC SOLUTIONS OF NON-ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM
    Xu, Qiuju
    Cai, Hong
    Tan, Zhong
    [J]. ACTA MATHEMATICA SCIENTIA, 2015, 35 (01) : 216 - 234
  • [8] A Beale-Kato-Majda criterion for three dimensional compressible viscous non-isentropic magnetohydrodynamic flows without heat-conductivity
    Wang, Yongfu
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 : 66 - 98
  • [9] Global Well-posedness of the Non-isentropic Full Compressible Magnetohydrodynamic Equations
    Fu Yi XU
    Xin Guang ZHANG
    Yong Hong WU
    Lou CACCETTA
    [J]. Acta Mathematica Sinica,English Series, 2016, 32 (02) : 227 - 250
  • [10] Global well-posedness of the non-isentropic full compressible magnetohydrodynamic equations
    Fu Yi Xu
    Xin Guang Zhang
    Yong Hong Wu
    Lou Caccetta
    [J]. Acta Mathematica Sinica, English Series, 2016, 32 : 227 - 250