On global solutions to the 3D viscous, compressible, and heat-conducting magnetohydrodynamic flows

被引:0
|
作者
Mingyu Zhang
机构
[1] Weifang University,School of Mathematics and Information Science
关键词
Compressible magnetohydrodynamic equations; Full compressible Navier–Stokes system; Strong solutions; Global existence; Uniqueness; 35B65; 35Q35; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the Cauchy problem of three-dimensional viscous, compressible, and heat-conducting magnetohydrodynamic flows. Both some new Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} gradient estimates and the “div-curl” decomposition of ‖∇u‖L3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \nabla \text{ u }\Vert _{L^3}$$\end{document} are established; the existence of global solutions to the Cauchy problem with small energy and lower regularity assumed on the initial data are obtained. Furthermore, we also prove that the global solution belongs to a new class of functions in which the uniqueness can be shown to hold.
引用
收藏
相关论文
共 50 条