Mean-field Theory and Synchronization in Random Recurrent Neural Networks

被引:0
|
作者
Emmanuel Dauce
Olivier Moynot
Olivier Pinaud
Manuel Samuelides
机构
[1] DTIM,ONERA Centre de Toulouse
[2] Université Paul Sabatier,LSP
[3] Université Paul Sabatier,Mathématiques pour l'Industrie et la Physique (UMR 5640)
[4] ENSAE,Mouvement et Perception
[5] Faculté des sciences du sport,undefined
来源
Neural Processing Letters | 2001年 / 14卷
关键词
asymmetric networks; chaos; mean field theory; stochastic dynamics; synchronization; two-population models;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first present a new mathematical approach, based on large deviation techniques, for the study of a large random recurrent neural network with discrete time dynamics. In particular, we state a mean field property and a law of large numbers, in the most general case of random models with sparse connections and several populations. Our results are supported by rigorous proofs. Then, we focus our interest on large size dynamics, in the case of a model with excitatory and inhibitory populations. The study of the mean field system and of the divergence of individual trajectories allows to define different dynamical regimes in the macroscopic parameters space, which include chaos and collective synchronization phenomenons. At last, we look at the behavior of a particular finite-size system submitted to gaussian static inputs. The system adapts its dynamics to the input signal, and spontaneously produces dynamical transitions from asynchronous to synchronous behaviors, which correspond to the crossing of a bifurcation line in the macroscopic parameters space.
引用
收藏
页码:115 / 126
页数:11
相关论文
共 50 条
  • [21] Mean-Field Criticality Explained by Random Matrices Theory
    Roberto da Silva
    Heitor C. M. Fernandes
    Eliseu Venites Filho
    Sandra D. Prado
    J. R. Drugowich de Felicio
    [J]. Brazilian Journal of Physics, 2023, 53
  • [22] Dynamical mean-field theory as a random loop problem
    Keiter, H
    Leuders, T
    [J]. EUROPHYSICS LETTERS, 2000, 49 (06): : 801 - 806
  • [23] Mean-field Theory for Some Bus Transport Networks with Random Overlapping Clique Structure
    杨旭华
    孙豹
    王波
    孙优贤
    [J]. Communications in Theoretical Physics, 2010, 53 (04) : 688 - 692
  • [24] Mean-field Theory for Some Bus Transport Networks with Random Overlapping Clique Structure
    Yang Xu-Hua
    Sun Bao
    Wang Bo
    Sun You-Xian
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (04) : 688 - 692
  • [25] Synchronization and random long time dynamics for mean-field plane rotators
    Bertini, Lorenzo
    Giacomin, Giambattista
    Poquet, Christophe
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2014, 160 (3-4) : 593 - 653
  • [26] Synchronization and random long time dynamics for mean-field plane rotators
    Lorenzo Bertini
    Giambattista Giacomin
    Christophe Poquet
    [J]. Probability Theory and Related Fields, 2014, 160 : 593 - 653
  • [27] ASYMMETRIC MEAN-FIELD NEURAL NETWORKS FOR MULTIPROCESSOR SCHEDULING
    HELLSTROM, BJ
    KANAL, LN
    [J]. NEURAL NETWORKS, 1992, 5 (04) : 671 - 686
  • [28] Synchronization and Spin-Flop Transitions for a Mean-Field XY Model in Random Field
    Collet, Francesca
    Ruszel, Wioletta
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (03) : 645 - 666
  • [29] Synchronization and Spin-Flop Transitions for a Mean-Field XY Model in Random Field
    Francesca Collet
    Wioletta Ruszel
    [J]. Journal of Statistical Physics, 2016, 164 : 645 - 666
  • [30] CLASSIFICATION OF NETWORKS OF AUTOMATA BY DYNAMIC MEAN-FIELD THEORY
    BURDA, Z
    JURKIEWICZ, J
    FLYVBJERG, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (13): : 3073 - 3081