Effect of Mo on microstructure, mechanical and corrosion properties of FeCrNiMnMox high-entropy alloys

被引:0
|
作者
Xue-wei Xing
Jin-kang Hu
Ying Liu
Wei Li
机构
[1] Jinan University,Institute of Advanced Wear & Corrosion Resistant and Functional Materials
来源
China Foundry | 2022年 / 19卷
关键词
high-entropy alloy; microstructure; mechanical properties; corrosion behavior; X-ray photoelectron spectroscopy (XPS); TG143.9; A;
D O I
暂无
中图分类号
学科分类号
摘要
Four FeCrNiMnMox (x=0, 0.1, 0.3, 0.5, in molar ratio) high-entropy alloys (HEAs) were synthesized by vacuum arc melting to explore the potential impact of Mo on the microstructure, mechanical properties, and passivation and electrochemical behaviors in 0.5 M H2SO4 solution. The results display that the FeCrNiMn alloy exhibits a single face-centered cubic (FCC) structure while the microstructures of the FeCrNiMnMo0.1, FeCrNiMnMo0.3, and FeCrNiMnMo0.5 alloys consist of the FCC and σ phase. The appear of the σ phase ascribed to the addition of Mo enhances the hardness and yield strength with the sacrifice of plasticity. The FeCrNiMnMox HEAs achieve the maximum hardness of 414 HV0.2 and the highest compressive yield strength of 830 MPa when x=0.5, but compressive fracture strain is lowered to 10.8%. X-ray photoelectron spectroscopy (XPS) and electrochemical analysis show that the passivation film in FeCrNiMnMox alloy mainly consists of chromium oxides and molybdenum oxides. Mo has a beneficial effect on the corrosion resistance of the FeCrNiMnMox HEAs in a 0.5 M H2SO4 solution by increasing the corrosion potential (Ecorr) and decreasing the corrosion current density (Icorr) and passivation current density (Ipass). The FeCrNiMnMo0.1 alloy shows the best corrosion resistance, mainly due to its passivation film consisting of a large proportion of chromium oxide (Cr2O3). More Mo additions promote the formation of the precipitate of a phase and the matrix regions depleted Cr and Mo elements adverse to the resistance to preferential localized corrosion.
引用
收藏
页码:464 / 472
页数:8
相关论文
共 50 条
  • [31] Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys
    Huo, Wenyi
    Zhou, Hui
    Fang, Feng
    Xie, Zonghan
    Jiang, Jianqing
    MATERIALS & DESIGN, 2017, 134 : 226 - 233
  • [32] Evolution of Microstructure and Mechanical Properties of the CoFeNiMnMox High-Entropy Alloys
    Liu, Yongqin
    Zhu, Man
    Yao, Lijuan
    Jian, Zengyun
    CRYSTALS, 2022, 12 (08)
  • [33] Microstructure and Mechanical Properties of TaNbVTiAlx Refractory High-Entropy Alloys
    Xiang, Li
    Guo, Wenmin
    Liu, Bin
    Fu, Ao
    Li, Jianbo
    Fang, Qihong
    Liu, Yong
    ENTROPY, 2020, 22 (03)
  • [34] Microstructure, mechanical properties and magnetic properties of FeCoNiCuTiSix high-entropy alloys
    QU HuaiZhi
    GONG MingLong
    LIU FengFang
    GAO BingYu
    BAI Jing
    GAO QiuZhi
    LI Song
    Science China(Technological Sciences), 2020, (03) : 459 - 466
  • [35] Microstructure, mechanical properties and magnetic properties of FeCoNiCuTiSix high-entropy alloys
    HuaiZhi Qu
    MingLong Gong
    FengFang Liu
    BingYu Gao
    Jing Bai
    QiuZhi Gao
    Song Li
    Science China Technological Sciences, 2020, 63 : 459 - 466
  • [36] Microstructure, mechanical properties and magnetic properties of FeCoNiCuTiSix high-entropy alloys
    Qu, HuaiZhi
    Gong, MingLong
    Liu, FengFang
    Gao, BingYu
    Bai, Jing
    Gao, QiuZhi
    Li, Song
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (03) : 459 - 466
  • [37] Research Advances in Additively Manufactured High-Entropy Alloys: Microstructure, Mechanical Properties, and Corrosion Resistance
    Han, Feng
    Li, Chunyang
    Huang, Jiqiang
    Wang, Jiacai
    Xue, Long
    Wang, Caimei
    Zhang, Yu
    METALS, 2025, 15 (02)
  • [38] The Microstructure and Mechanical Properties of Refractory High-Entropy Alloys with High Plasticity
    Chen, Yiwen
    Li, Yunkai
    Cheng, Xingwang
    Wu, Chao
    Cheng, Bo
    Xu, Ziqi
    MATERIALS, 2018, 11 (02)
  • [39] Effect of Mo Element on the Mechanical Properties and Tribological Responses of CoCrFeNiMox High-Entropy Alloys
    Liu, Ying
    Xie, Yongxin
    Cui, Shaogang
    Yi, Yanliang
    Xing, Xuewei
    Wang, Xiaojian
    Li, Wei
    METALS, 2021, 11 (03) : 1 - 18
  • [40] Microstructure and Mechanical Behavior of High-Entropy Alloys
    Joseph J. Licavoli
    Michael C. Gao
    John S. Sears
    Paul D. Jablonski
    Jeffrey A. Hawk
    Journal of Materials Engineering and Performance, 2015, 24 : 3685 - 3698