Normal edge-transitive Cayley graphs of Frobenius groups

被引:0
|
作者
Brian P. Corr
Cheryl E. Praeger
机构
[1] The University of Western Australia,Centre for the Mathematics of Symmetry and Computation
[2] Universidade Federal de Minas Gerais,undefined
[3] King Abdulazziz University,undefined
来源
关键词
Cayley graphs; Group theory; Algebraic graph theory; Frobenius groups;
D O I
暂无
中图分类号
学科分类号
摘要
A Cayley graph for a group G is called normal edge-transitive if it admits an edge-transitive action of some subgroup of the holomorph of G [the normaliser of a regular copy of G in Sym(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Sym}}}(G)$$\end{document}]. We complete the classification of normal edge-transitive Cayley graphs of order a product of two primes by dealing with Cayley graphs for Frobenius groups of such orders. We determine the automorphism groups of these graphs, proving in particular that there is a unique vertex-primitive example, namely the flag graph of the Fano plane.
引用
收藏
页码:803 / 827
页数:24
相关论文
共 50 条