Plastic Deformation Modes in Mono- and Bimodal-Type Ultrafine-Grained Austenitic Stainless Steel

被引:10
|
作者
Ravi Kumar B. [1 ]
Gujral A. [2 ]
机构
[1] CSIR-National Metallurgical Laboratory, Jamshedpur
[2] G. B. Pant University of Agriculture & Technology, Pantnagar
来源
Ravi Kumar, B. | 1600年 / Springer Science and Business Media, LLC卷 / 03期
关键词
Electron backscatter diffraction (EBSD); Phase transformation; Stainless steel; Thermo-mechanical processing; Ultrafine-grain microstructure;
D O I
10.1007/s13632-014-0152-6
中图分类号
学科分类号
摘要
An attempt was made to track plastic tensile deformation modes operating in bulk ultrafine-grained austenitic stainless steel with mono- (maximum at ~0.6 μm) and bimodal-type (minimum at ~0.5 μm and maximum at ~1.65 μm) grain size distributions produced by cyclic thermal processing. Post tensile deformation electron backscatter diffraction studies were conducted to analyse the impact of grain size distribution on plastic deformation characteristics. The study revealed extensive strain localisation in the monomodal-type grain size distribution, leading to poor strain-hardening behaviour. On the other hand, the bimodal-type distribution disclosed a conventional dislocation-mediated deformation mechanism operating in the coarse grains, while it was restricted to initial small strains in ultrafine austenite grains. The subsequent deformation process in these ultrafine austenite grains was dictated by nucleation and autocatalytic growth of strain-induced α′-martensite. The observed martensitic transformation of ultrafine austenite grains in preference to coarse grains was attributed to activation of local ‘grain to grain’ interactions. © 2014, Springer Science+Business Media New York and ASM International.
引用
收藏
页码:397 / 407
页数:10
相关论文
共 50 条
  • [41] Deformation mechanisms and strain rate sensitivity of bimodal and ultrafine-grained copper
    Bach, J.
    Stoiber, M.
    Schindler, L.
    Hoeppel, H. W.
    Goeken, M.
    ACTA MATERIALIA, 2020, 186 (186) : 363 - 373
  • [42] Local severe plastic deformation for producing ultrafine-grained regions
    Neugebauer, R.
    Putz, M.
    Bergmann, M.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2009, 40 (07) : 512 - 516
  • [43] Ultrafine-grained microstructures evolving during severe plastic deformation
    Ungár, T.
    Alexandrov, I.
    Zehetbauer, M.
    JOM, 2000, 52 (04) : 34 - 36
  • [44] Severe Plastic Deformation Techniques for Bulk Ultrafine-grained Materials
    Wang Chengpeng
    Li Fuguo
    Chen Bo
    Yuan Zhanwei
    Lu Hongya
    RARE METAL MATERIALS AND ENGINEERING, 2012, 41 (06) : 941 - 946
  • [45] Producing ultrafine-grained materials through severe plastic deformation
    Kawasaki, Megumi
    Langdon, Terence G.
    EMERGING MATERIALS RESEARCH, 2014, 3 (06) : 252 - 260
  • [46] Favorable Modulation of Pre-Osteoblast Response to Nanograined/Ultrafine-grained Structures in Austenitic Stainless Steel
    Misra, R. D. K.
    Thein-Han, W-W.
    Pesacreta, T. C.
    Hasenstein, K. H.
    Somani, M. C.
    Karjalainen, L. P.
    ADVANCED MATERIALS, 2009, 21 (12) : 1280 - +
  • [47] The Effect of the Superconducting Transition on Plastic Deformation of Ultrafine-Grained Aluminum
    Estrin, Yuri
    Fomenko, Vera
    Grigorova, Tatyana
    Isaev, Nikolai
    Pustovalov, Vitaliy
    Shumilin, Sergiy
    Janecek, Milos
    ADVANCED ENGINEERING MATERIALS, 2009, 11 (1-2) : 9 - 15
  • [49] Ultrafine-grained microstructures evolving during severe plastic deformation
    T. Ungár
    I. Alexandrov
    M. Zehetbauer
    JOM, 2000, 52 : 34 - 36
  • [50] Characterization of ultrafine-grained structures produced by severe plastic deformation
    Horita, Z
    Furukawa, M
    Nemoto, M
    Valiev, RZ
    Langdon, TG
    INVESTIGATIONS AND APPLICATIONS OF SEVERE PLASTIC DEFORMATION, 2000, 80 : 155 - 162