Cross-protein transfer learning substantially improves disease variant prediction

被引:0
|
作者
Milind Jagota
Chengzhong Ye
Carlos Albors
Ruchir Rastogi
Antoine Koehl
Nilah Ioannidis
Yun S. Song
机构
[1] Computer Science Division,Department of Statistics
[2] University of California,undefined
[3] University of California,undefined
[4] Chan Zuckerberg Biohub,undefined
[5] Center for Computational Biology,undefined
[6] University of California,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Cross-protein transfer learning substantially improves disease variant prediction
    Jagota, Milind
    Ye, Chengzhong
    Albors, Carlos
    Rastogi, Ruchir
    Koehl, Antoine
    Ioannidis, Nilah
    Song, Yun S.
    [J]. GENOME BIOLOGY, 2023, 24 (01)
  • [2] Model Establishment of Cross-Disease Course Prediction Using Transfer Learning
    Ying, Josh Jia-Ching
    Chang, Yen-Ting
    Chen, Hsin-Hua
    Chao, Wen-Cheng
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [3] Joint learning improves protein abundance prediction in cancers
    Li, Hongyang
    Siddiqui, Omer
    Zhang, Hongjiu
    Guan, Yuanfang
    [J]. BMC BIOLOGY, 2019, 17 (01)
  • [4] Joint learning improves protein abundance prediction in cancers
    Hongyang Li
    Omer Siddiqui
    Hongjiu Zhang
    Yuanfang Guan
    [J]. BMC Biology, 17
  • [5] Protein transfer learning improves identification of heat shock protein families
    Min, Seonwoo
    Kim, HyunGi
    Lee, Byunghan
    Yoon, Sungroh
    [J]. PLOS ONE, 2021, 16 (05):
  • [6] Transfer learning for cross-context prediction of protein expression from 5'UTR sequence
    Gilliot, Pierre-Aurelien
    Gorochowski, Thomas E.
    [J]. NUCLEIC ACIDS RESEARCH, 2024, 52 (13)
  • [7] Disease-specific variant pathogenicity prediction significantly improves variant interpretation in inherited cardiac conditions
    Zhang, Xiaolei
    Walsh, Roddy
    Whiffin, Nicola
    Buchan, Rachel
    Midwinter, William
    Wilk, Alicja
    Govind, Risha
    Li, Nicholas
    Ahmad, Mian
    Mazzarotto, Francesco
    Roberts, Angharad
    Theotokis, Pantazis I.
    Mazaika, Erica
    Allouba, Mona
    de Marvao, Antonio
    Pua, Chee Jian
    Day, Sharlene M.
    Ashley, Euan
    Colan, Steven D.
    Michels, Michelle
    Pereira, Alexandre C.
    Jacoby, Daniel
    Ho, Carolyn Y.
    Olivotto, Iacopo
    Gunnarsson, Gunnar T.
    Jefferies, John L.
    Semsarian, Chris
    Ingles, Jodie
    O'Regan, Declan P.
    Aguib, Yasmine
    Yacoub, Magdi H.
    Cook, Stuart A.
    Barton, Paul J. R.
    Bottolo, Leonardo
    Ware, James S.
    [J]. GENETICS IN MEDICINE, 2021, 23 (01) : 69 - 79
  • [8] Learning spatial structures of proteins improves protein-protein interaction prediction
    Song, Bosheng
    Luo, Xiaoyan
    Luo, Xiaoli
    Liu, Yuansheng
    Niu, Zhangming
    Zeng, Xiangxiang
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [9] Transfer learning with false negative control improves polygenic risk prediction
    Jeng, Xinge Jessie
    Hu, Yifei
    Venkat, Vaishnavi
    Lu, Tzu-Pin
    Tzeng, Jung-Ying
    [J]. PLOS GENETICS, 2023, 19 (11):
  • [10] Biologically relevant transfer learning improves transcription factor binding prediction
    Gherman Novakovsky
    Manu Saraswat
    Oriol Fornes
    Sara Mostafavi
    Wyeth W. Wasserman
    [J]. Genome Biology, 22