Disease-specific variant pathogenicity prediction significantly improves variant interpretation in inherited cardiac conditions

被引:30
|
作者
Zhang, Xiaolei [1 ,2 ]
Walsh, Roddy [1 ,2 ]
Whiffin, Nicola [1 ,2 ]
Buchan, Rachel [1 ,2 ]
Midwinter, William [1 ,2 ]
Wilk, Alicja [1 ,2 ]
Govind, Risha [1 ,2 ]
Li, Nicholas [2 ,3 ]
Ahmad, Mian [1 ,2 ]
Mazzarotto, Francesco [1 ,4 ,5 ]
Roberts, Angharad [1 ,2 ]
Theotokis, Pantazis I. [1 ,2 ]
Mazaika, Erica [1 ,2 ]
Allouba, Mona [1 ,6 ]
de Marvao, Antonio [3 ]
Pua, Chee Jian [7 ]
Day, Sharlene M. [8 ,9 ]
Ashley, Euan [10 ]
Colan, Steven D. [11 ]
Michels, Michelle [12 ]
Pereira, Alexandre C. [13 ]
Jacoby, Daniel [14 ]
Ho, Carolyn Y. [15 ]
Olivotto, Iacopo [4 ]
Gunnarsson, Gunnar T. [16 ]
Jefferies, John L. [17 ]
Semsarian, Chris [18 ,19 ]
Ingles, Jodie [18 ]
O'Regan, Declan P. [3 ]
Aguib, Yasmine [1 ,6 ]
Yacoub, Magdi H. [1 ,6 ]
Cook, Stuart A. [1 ,2 ,7 ,20 ]
Barton, Paul J. R. [1 ,2 ]
Bottolo, Leonardo [21 ,22 ,23 ]
Ware, James S. [1 ,2 ,3 ]
机构
[1] Imperial Coll London, Natl Heart & Lung Inst, London, England
[2] Fdn Trust London, Royal Brompton & Harefield NHS, Cardiovasc Res Ctr, London, England
[3] Imperial Coll London, MRC London Inst Med Sci, London, England
[4] Careggi Univ Hosp, Cardiomyopathy Unit, Florence, Italy
[5] Univ Florence, Dept Clin & Expt Med, Florence, Italy
[6] Magdi Yacoub Heart Fdn, Aswan Heart Ctr, Aswan, Egypt
[7] Natl Heart Ctr, Singapore, Singapore
[8] Univ Penn, Perelman Sch Med, Div Cardiovasc Med, Philadelphia, PA 19104 USA
[9] Univ Penn, Perelman Sch Med, Penn Cardiovasc Inst, Philadelphia, PA 19104 USA
[10] Stanford Univ, Med Ctr, Div Cardiovasc Med, Stanford, CA 94305 USA
[11] Boston Childrens Hosp, Dept Cardiol, Boston, MA USA
[12] Erasmus MC, Thoraxctr, Dept Cardiol, Rotterdam, Netherlands
[13] Univ Sao Paulo, Heart Inst InCor, Sch Med, Sao Paulo, Brazil
[14] Yale Univ, Dept Internal Med, New Haven, CT USA
[15] Brigham & Womens Hosp, Div Cardiovasc, 75 Francis St, Boston, MA 02115 USA
[16] Univ Iceland, Fac Med, Akureyri, Iceland
[17] Univ Tennessee, Cardiovasc Inst, Memphis, TN USA
[18] Univ Sydney, Centenary Inst, Sydney, NSW, Australia
[19] Royal Prince Alfred Hosp, Dept Cardiol, Sydney, NSW, Australia
[20] Duke Natl Univ Singapore, Singapore, Singapore
[21] Univ Cambridge, Dept Med Genet, Cambridge, England
[22] Alan Turing Inst, London, England
[23] Univ Cambridge, MRC Biostat Unit, Cambridge, England
基金
英国医学研究理事会; 英国工程与自然科学研究理事会; 英国惠康基金;
关键词
pathogenicity prediction; missense variant interpretation; cardiomyopathy; long QT syndrome; Brugada syndrome; MUTATION; GENOTYPE;
D O I
10.1038/s41436-020-00972-3
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Purpose: Accurate discrimination of benign and pathogenic rare variation remains a priority for clinical genome interpretation. State-of-the-art machine learning variant prioritization tools are imprecise and ignore important parameters defining gene-disease relationships, e.g., distinct consequences of gain-of-function versus loss-of-function variants. We hypothesized that incorporating disease-specific information would improve tool performance. Methods: We developed a disease-specific variant classifier, CardioBoost, that estimates the probability of pathogenicity for rare missense variants in inherited cardiomyopathies and arrhythmias. We assessed CardioBoost's ability to discriminate known pathogenic from benign variants, prioritize disease-associated variants, and stratify patient outcomes. Results: CardioBoost has high global discrimination accuracy (precision recall area under the curve [AUC] 0.91 for cardiomyopathies; 0.96 for arrhythmias), outperforming existing tools (4-24% improvement). CardioBoost obtains excellent accuracy (cardiomyopathies 90.2%; arrhythmias 91.9%) for variants classified with >90% confidence, and increases the proportion of variants classified with high confidence more than twofold compared with existing tools. Variants classified as disease-causing are associated with both disease status and clinical severity, including a 21% increased risk (95% confidence interval [CI] 11-29%) of severe adverse outcomes by age 60 in patients with hypertrophic cardiomyopathy. Conclusions: A disease-specific variant classifier outperforms state-of-the-art genome-wide tools for rare missense variants in inherited cardiac conditions (https://www.cardiodb.org/cardioboost/), highlighting broad opportunities for improved pathogenicity prediction through disease specificity.
引用
收藏
页码:69 / 79
页数:11
相关论文
共 50 条
  • [1] DVPred: a disease-specific prediction tool for variant pathogenicity classification for hearing loss
    Bu, Fengxiao
    Zhong, Mingjun
    Chen, Qinyi
    Wang, Yumei
    Zhao, Xia
    Zhang, Qian
    Li, Xiarong
    Booth, Kevin T.
    Azaiez, Hela
    Lu, Yu
    Cheng, Jing
    Smith, Richard J. H.
    Yuan, Huijun
    [J]. HUMAN GENETICS, 2022, 141 (3-4) : 401 - 411
  • [2] DVPred: a disease-specific prediction tool for variant pathogenicity classification for hearing loss
    Fengxiao Bu
    Mingjun Zhong
    Qinyi Chen
    Yumei Wang
    Xia Zhao
    Qian Zhang
    Xiarong Li
    Kevin T. Booth
    Hela Azaiez
    Yu Lu
    Jing Cheng
    Richard J. H. Smith
    Huijun Yuan
    [J]. Human Genetics, 2022, 141 : 401 - 411
  • [3] Genetic variant pathogenicity prediction trained using disease-specific clinical sequencing data sets
    Evans, Perry
    Wu, Chao
    Lindy, Amanda
    McKnight, Dianalee A.
    Lebo, Matthew
    Sarmady, Mahdi
    Abou Tayoun, Ahmad N.
    [J]. GENOME RESEARCH, 2019, 29 (07) : 1144 - 1151
  • [4] A systematic approach for applying disease-specific phenotype in clinical variant interpretation
    Groopman, Emily
    Goldstein, Jennifer
    McNulty, Shannon
    Ross, Justyne
    Chang, Kelsea
    Harrison, Steven
    Berg, Jonathan
    [J]. GENETICS IN MEDICINE, 2022, 24 (03) : S222 - S223
  • [5] PdmIRD: missense variants pathogenicity prediction for inherited retinal diseases in a disease-specific manner
    Bing Zeng
    Dong Cheng Liu
    Jian Guo Huang
    Xiao Bo Xia
    Bo Qin
    [J]. Human Genetics, 2024, 143 : 331 - 342
  • [6] PdmIRD: missense variants pathogenicity prediction for inherited retinal diseases in a disease-specific manner
    Zeng, Bing
    Liu, Dong Cheng
    Huang, Jian Guo
    Xia, Xiao Bo
    Qin, Bo
    [J]. HUMAN GENETICS, 2024, 143 (03) : 331 - 342
  • [7] Disease-specific ACMG/AMP guidelines improve sequence variant interpretation for hearing loss
    Patel, Mayher J.
    DiStefano, Marina T.
    Oza, Andrea M.
    Hughes, Madeline Y.
    Wilcox, Emma H.
    Hemphill, Sarah E.
    Cushman, Brandon J.
    Grant, Andrew R.
    Siegert, Rebecca K.
    Shen, Jun
    Chapin, Alex
    Boczek, Nicole J.
    Schimmenti, Lisa A.
    Nara, Kiyomitsu
    Kenna, Margaret
    Azaiez, Hela
    Booth, Kevin T.
    Avraham, Karen B.
    Kremer, Hannie
    Griffith, Andrew J.
    Rehm, Heidi L.
    Amr, Sami S.
    Abou Tayoun, Ahmad N.
    [J]. GENETICS IN MEDICINE, 2021, 23 (11) : 2208 - 2212
  • [8] Family-specific analysis of variant pathogenicity prediction tools
    Zaucha, Jan
    Heinzinger, Michael
    Tarnovskaya, Svetlana
    Rost, Burkhard
    Frishman, Dmitrij
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (02)
  • [9] Improving genetic diagnosis by disease-specific, ACMG/AMP variant interpretation guidelines for hearing loss
    Kim, So Young
    Kim, Bong Jik
    Oh, Doo Yi
    Han, Jin Hee
    Yi, Nayoung
    Kim, Namju Justin
    Park, Moo Kyun
    Keum, Changwon
    Seo, Go Hun
    Choi, Byung Yoon
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Improving genetic diagnosis by disease-specific, ACMG/AMP variant interpretation guidelines for hearing loss
    So Young Kim
    Bong Jik Kim
    Doo Yi Oh
    Jin Hee Han
    Nayoung Yi
    Namju Justin Kim
    Moo Kyun Park
    Changwon Keum
    Go Hun Seo
    Byung Yoon Choi
    [J]. Scientific Reports, 12