Accessory parameters in confluent Heun equations and classical irregular conformal blocks

被引:0
|
作者
O. Lisovyy
A. Naidiuk
机构
[1] Université de Tours,Institut Denis
[2] CNRS,Poisson
[3] Parc de Grandmont,undefined
来源
关键词
Conformal field theory; Accessory parameters; Heun equation; 81R12; 81T40; 33E10;
D O I
暂无
中图分类号
学科分类号
摘要
Classical Virasoro conformal blocks are believed to be directly related to accessory parameters of Floquet type in the Heun equation and some of its confluent versions. We extend this relation to another class of accessory parameter functions that are defined by inverting all-order Bohr–Sommerfeld periods for confluent and biconfluent Heun equation. The relevant conformal blocks involve Nagoya irregular vertex operators of rank 1 and 2 and conjecturally correspond to partition functions of a 4D N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {N}}=2$$\end{document}, Nf=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_f=3$$\end{document} gauge theory at strong coupling and an Argyres–Douglas theory.
引用
收藏
相关论文
共 50 条
  • [1] Accessory parameters in confluent Heun equations and classical irregular conformal blocks
    Lisovyy, O.
    Naidiuk, A.
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (06)
  • [2] CLASSICAL FORIN OF HEUN CONFLUENT EQUATIONS
    DECARREAU, A
    DUMONTLEPAGE, MC
    MARONI, P
    ROBERT, A
    RONVEAUX, A
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1978, 92 (1-2): : 53 - 78
  • [3] Classical conformal blocks and accessory parameters from isomonodromic deformations
    Lencses, Mate
    Novaes, Fabio
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (04):
  • [4] Classical conformal blocks and accessory parameters from isomonodromic deformations
    Máté Lencsés
    Fábio Novaes
    Journal of High Energy Physics, 2018
  • [5] CONFLUENT EQUATIONS OF HEUN EQUATION
    DECARREAU, A
    MARONI, P
    ROBERT, A
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1978, 92 (03): : 151 - 189
  • [6] Isomonodromy sets of accessory parameters for Heun class equations
    Xia, Jun
    Xu, Shuai-Xia
    Zhao, Yu-Qiu
    STUDIES IN APPLIED MATHEMATICS, 2021, 146 (04) : 901 - 952
  • [7] On the solutions of double confluent Heun equations
    Roseau A.
    Aequationes mathematicae, 2000, 60 (1-2) : 116 - 136
  • [8] Orthogonal polynomials, bi-confluent Heun equations and semi-classical weights
    Wang, Dan
    Zhu, Mengkun
    Chen, Yang
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (07) : 1000 - 1012
  • [9] Ince's limits for confluent and double-confluent Heun equations
    Figueiredo, BDB
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (11)
  • [10] Confluent conformal blocks of the second kind
    Lenells, Jonatan
    Roussillon, Julien
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (06)