Recurrence and Resonance in the Cubic Klein-Gordon Equation

被引:0
|
作者
Ferdinand Verhulst
机构
[1] Utrecht University,Mathematisch Instituut
来源
关键词
2-dim nonlinear waves; Hamiltonian; Resonance zones; Double resonance; 70H07; 70H12; 34E10; 37J40;
D O I
暂无
中图分类号
学科分类号
摘要
In a number of models for coupled oscillators and nonlinear wave equations primary resonances dominate the phase-space phenomena. A new feature is that in a Hamiltonian framework, the interaction of primary and higher order resonances is shown to be important and can be signaled by using recurrence properties. The interaction may involve embedded double resonance. We will demonstrate these phenomena for the cubic Klein-Gordon equation on a square with Dirichlet boundary conditions using normal form techniques. The results are qualitatively and quantitatively very different from the one-dimensional spatial case.
引用
收藏
页码:145 / 164
页数:19
相关论文
共 50 条
  • [41] Variational aspects of the Klein-Gordon equation
    Datta, S. N.
    Ghosh, A.
    Chakraborty, R.
    INDIAN JOURNAL OF PHYSICS, 2015, 89 (02) : 181 - 187
  • [42] EXPONENTIAL POTENTIAL AND KLEIN-GORDON EQUATION
    BAWIN, M
    LAVINE, JP
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1974, A 23 (02): : 311 - 320
  • [43] A Novel Interpretation of the Klein-Gordon Equation
    Wharton, K. B.
    FOUNDATIONS OF PHYSICS, 2010, 40 (03) : 313 - 332
  • [44] A Symmetrical Interpretation of the Klein-Gordon Equation
    Michael B. Heaney
    Foundations of Physics, 2013, 43 : 733 - 746
  • [45] On the Numerical Solution of the Klein-Gordon Equation
    Bratsos, A. G.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) : 939 - 951
  • [46] LEVINSON THEOREM FOR THE KLEIN-GORDON EQUATION
    LIANG, YG
    MA, ZQ
    PHYSICAL REVIEW D, 1986, 34 (02): : 565 - 570
  • [47] The Klein-Gordon Equation in Machian Model
    Liu, Bin
    Dai, Yun-Chuan
    Hu, Xian-Ru
    Deng, Jian-Bo
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (11) : 3544 - 3551
  • [48] A Novel Interpretation of the Klein-Gordon Equation
    K. B. Wharton
    Foundations of Physics, 2010, 40 : 313 - 332
  • [49] ALGEBRAIC SOLUTION OF KLEIN-GORDON EQUATION
    NICKLE, HH
    BEERS, BL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1972, 5 (12): : 1658 - 1663
  • [50] GEOMETRICAL DERIVATION OF THE KLEIN-GORDON EQUATION
    GALEHOUSE, DC
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1981, 20 (06) : 457 - 479