Design and analysis of dispersion-compensating chalcogenide photonic crystal fiber with high birefringence

被引:0
|
作者
S. James Raja
S. Suriavel Rao
R. Charlcedony
机构
[1] National Institute of Technology Calicut,Department of Electronics and Communication Engineering
[2] Karunya Institute of Technology and Sciences,Department of Electronics and Communication Engineering
来源
SN Applied Sciences | 2020年 / 2卷
关键词
Hexagonal lattice PCF; Single mode; Birefringence; Chromatic dispersion; Mid-IR wavelength; Nonlinear optics;
D O I
暂无
中图分类号
学科分类号
摘要
The photonic crystal fiber (PCF) with a bunch of air holes enclosing the silica core field has momentous and compelling attributes when compared with the ordinary single-mode fibers. In this work, both the birefringence and dispersion properties of a polarization-maintaining chalcogenide (ChG) photonic crystal fiber are numerically investigated by means of the finite element method. Through simulation, it is found that the birefringence of the proposed Ge11.5As24Se64.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{G}\mathrm{e}}_{11.5}{\mathrm{A}\mathrm{s}}_{24}{\mathrm{S}\mathrm{e}}_{64.5}$$\end{document} PCF can reach as high as 0.03\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.03$$\end{document} when compared with the conventional fiber that has merely 5×10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5\times {10}^{-4}$$\end{document} for wavelengths in the 2–10 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \mathrm{m}$$\end{document} range. The PCF is designed with zero-dispersion wavelengths for x- and y-polarized modes in the 2–10 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \mathrm{m}$$\end{document} range. It is also observed that over the entire MIR wavelength range, the GVD remains positive and has a maximum value of 30,000 ps2/nm-km. Hence, the proposed Ge11.5As24Se64.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{G}\mathrm{e}}_{11.5}{\mathrm{A}\mathrm{s}}_{24}{\mathrm{S}\mathrm{e}}_{64.5}$$\end{document} PCF plays the dual role of acting as a very good polarization-maintaining fiber due to its very high birefringence and an excellent dispersion-compensating fiber due to its large positive GVD. This Ge11.5As24Se64.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{G}\mathrm{e}}_{11.5}{\mathrm{A}\mathrm{s}}_{24}{\mathrm{S}\mathrm{e}}_{64.5}$$\end{document} PCF serves as a very good candidate for ultra-broadband high bit-rate transmission. Supercontinuum generation is another important application of PCF. Supercontinuum generation is a generation of coherent and broadband light. SC generation in PCFs has several applications in optical coherence tomography (OCT), optical frequency metrology (OFM), pulse compression, and design of ultrafast femtosecond laser pulses.
引用
下载
收藏
相关论文
共 50 条
  • [31] High birefringence low-dispersion of nonlinear photonic crystal fiber
    Xu, Qiang
    Miao, Runcai
    Zhang, Yani
    OPTIK, 2013, 124 (15): : 2269 - 2272
  • [32] Broadband high birefringence and low dispersion terahertz photonic crystal fiber
    Li, Shaopeng
    Liu, Hongjun
    Huang, Nan
    Sun, Qibing
    JOURNAL OF OPTICS, 2014, 16 (10)
  • [33] Dispersion Compensating Photonic Crystal Fiber with Defected Core
    Kraus, S.
    Botah, K. O.
    Lucki, M.
    23RD CONFERENCE AND EXHIBITION ON OPTICAL COMMUNICATIONS 2011 (OK 2011), 2011, : 34 - 36
  • [34] Design and Characterization of Highly Birefringent Residual Dispersion Compensating Photonic Crystal Fiber
    Hasan, Md. Imran
    Razzak, S. M. Abdur
    Habib, Md. Samiul
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2014, 32 (23) : 3976 - 3982
  • [35] Design of single polarization single mode dispersion compensating photonic crystal fiber
    Habib, M. Samiul
    Ahmad, Redwan
    Habib, M. Selim
    Razzak, S. M. A.
    OPTIK, 2014, 125 (16): : 4313 - 4318
  • [36] Design of a new type high birefringence photonic crystal fiber
    CHEN Ming
    Optoelectronics Letters, 2008, (01) : 19 - 22
  • [37] Design of a new type high birefringence photonic crystal fiber
    Chen M.
    Yang S.-G.
    Yin F.-F.
    Chen H.-W.
    Xie S.-Z.
    Optoelectron. Lett., 2008, 1 (19-22): : 19 - 22
  • [38] Investigation of high birefringence and negative dispersion photonic crystal fiber with hybrid crystal lattice
    Wang, Wei
    Yang, Bo
    Song, Hongru
    Fan, Yue
    OPTIK, 2013, 124 (17): : 2901 - 2903
  • [39] Highly Birefringence Photonic Crystal Fiber with Anomalous Dispersion
    Sharma, Mohit
    Borgohain, Nitu
    Konar, S.
    2013 INTERNATIONAL CONFERENCE ON MICROWAVE AND PHOTONICS (ICMAP), 2013,
  • [40] Simulation on dispersion and birefringence properties of photonic crystal fiber
    Xu, Qiang
    CHINESE OPTICS LETTERS, 2014, 12