Thermal dry reforming of methane over La2O3 co-supported Ni/MgAl2O4 catalyst for hydrogen-rich syngas production

被引:0
|
作者
Asif Hussain Khoja
Mustafa Anwar
Sehar Shakir
Muhammad Taqi Mehran
Arslan Mazhar
Adeel Javed
Nor Aishah Saidina Amin
机构
[1] National University of Sciences and Technology (NUST),Fossil Fuel Laboratory, Department of Thermal Energy Engineering, U.S.
[2] National University of Sciences and Technology (NUST),Pakistan Centre for Advanced Studies in Energy (USPCAS
[3] Universiti Teknologi Malaysia (UTM),E)
来源
关键词
Dry reforming of methane; thermal reactor; MgAl; O; H; production; syngas;
D O I
暂无
中图分类号
学科分类号
摘要
The excess emission of greenhouse gases (GHGs) such as CO2 and CH4 is posing an acute threat to the environment, and efficient ways are being sought to utilize GHGs to produce syngas (H2, CO) and lighter hydrocarbons (HCs). In this study, the dry reforming of methane (DRM) has been carried out at 700 °C using La2O3 co-supported Ni/MgAl2O4 nano-catalyst in a fixed bed thermal reactor. The catalyst is characterized using various techniques such as XRD, FESEM, EDX-mapping, CO2-TPD, H2-TPR and TGA. The modified MgAl2O4 shows the flake type structure after the addition of La2O3. The TPR and TPD analysis shows the highly dispersed metal and strong basic nature of the catalyst consequently enhances the conversion of CO2 and CH4. The highest conversion for CH4 is 87.3% while CO2 conversion is nearly 89.5% in 20 h of operation time. The selectivity of H2 and CO approached 50% making the H2/CO ratio above unity. In the longer time-on-stream (TOS) test, the catalyst shows elevated potential for longer runs showcasing better catalytic activity. The stability of the catalyst is indicated via a proposed reaction mechanism for DRM in operating conditions. Moreover, TGA indicates the lower weight loss of spent catalyst which ascribed the lower formation of carbon during TOS 20 h.
引用
下载
收藏
页码:3817 / 3833
页数:16
相关论文
共 50 条
  • [21] Hydrogen production from butane steam reforming over Ni/Ag loaded MgAl2O4 catalyst
    Jeong, Harim
    Kang, Misook
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2010, 95 (3-4) : 446 - 455
  • [22] Dry reforming of methane for syngas production over Ni-Co-supported Al2O3-MgO catalysts
    Abd Ghani, Nur Azeanni
    Azapour, Abbas
    Muhammad, Syed Anuar Faua'ad Syed
    Ramli, Nasser Mohamed
    Vo, Dai-Viet N.
    Abdullah, Bawadi
    APPLIED PETROCHEMICAL RESEARCH, 2018, 8 (04): : 263 - 270
  • [23] Kinetics modeling for the mixed reforming of methane over Ni-CeO2/MgAl2O4 catalyst
    Jun, Hye Jin
    Park, Myung-June
    Baek, Seung-Chan
    Bae, Jong Wook
    Ha, Kyoung-Su
    Jun, Ki-Won
    JOURNAL OF NATURAL GAS CHEMISTRY, 2011, 20 (01): : 9 - 17
  • [24] Artificial neural network modeling of hydrogen-rich syngas production from methane dry reforming over novel Ni/CaFe2O4 catalysts
    Hossain, M. Anwar
    Ayodele, Bamidele V.
    Cheng, Chin Kui
    Khan, Maksudur R.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (26) : 11119 - 11130
  • [25] Kinetics modeling for the mixed reforming of methane over Ni-CeO2/MgAl2O4 catalyst
    Hye Jin Jun
    Myung-June Park
    Seung-Chan Baek
    Jong Wook Bae
    Kyoung-Su Ha
    Ki-Won Jun
    Journal of Energy Chemistry, 2011, (01) : 9 - 17
  • [27] Preparation of Ni/Pt catalysts supported on spinel (MgAl2O4) for methane reforming
    Foletto, Edson L.
    Alves, Ricardo W.
    Jahn, Sergio L.
    JOURNAL OF POWER SOURCES, 2006, 161 (01) : 531 - 534
  • [28] Kinetics of steam reforming of methane on Rh-Ni/MgAl2O4 catalyst
    Katheria, Sanjay
    Kunzru, Deepak
    Deo, Goutam
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2020, 130 (01) : 91 - 101
  • [29] Washcoating of Ni/MgAl2O4 Catalyst on FeCralloy Monoliths for Steam Reforming of Methane
    Katheria, Sanjay
    Deo, Goutam
    Kunzru, Deepak
    ENERGY & FUELS, 2017, 31 (03) : 3143 - 3153
  • [30] Performance Analysis of TiO2-Modified Co/MgAl2O4 Catalyst for Dry Reforming of Methane in a Fixed Bed Reactor for Syngas (H2, CO) Production
    Mazhar, Arslan
    Khoja, Asif Hussain
    Azad, Abul Kalam
    Mushtaq, Faisal
    Naqvi, Salman Raza
    Shakir, Sehar
    Hassan, Muhammad
    Liaquat, Rabia
    Anwar, Mustafa
    ENERGIES, 2021, 14 (11)