A Conjecture of Mukai Relating Numerical Invariants of Fano Manifolds

被引:0
|
作者
Marco Andreatta
机构
[1] Marco Andreatta,Dipartimento di Matematica
来源
关键词
Primary 14J45; Secondary 14E30; Fano manifolds; rational curves; Picard number; pseudoindex;
D O I
暂无
中图分类号
学科分类号
摘要
A complex manifold X of dimension n such that the anticanonical bundle –KX := det TX is ample is called a Fano manifold. Besides the dimension, other two integers play an essential role in the classification of these manifolds, namely the pseudoindex of X, iX, which is the minimal anticanonical degree of rational curves on X, and the Picard number ρX, the dimension of N1(X), the vector space generated by irreducible complex curves modulo numerical equivalence . A (generalization of a) conjecture of Mukai says that ρX(iX – 1) ≤ n. In this paper we present some partial steps towards the conjecture, we show how one can interpretate and possibly solve it with the use of families of rational curves on a uniruled variety, and more generally with the instruments of Mori theory. We consider also other related problems: the description of some Fano manifolds which are at the border of the Mukai relations and how the pseudoindex changes via (some) birational transformation.
引用
收藏
页码:361 / 383
页数:22
相关论文
共 50 条
  • [31] On deformations of Fano manifolds
    Cao, Huai-Dong
    Sun, Xiaofeng
    Yau, Shing-Tung
    Zhang, Yingying
    MATHEMATISCHE ANNALEN, 2022, 383 (1-2) : 809 - 836
  • [32] On deformations of Fano manifolds
    Huai-Dong Cao
    Xiaofeng Sun
    Shing-Tung Yau
    Yingying Zhang
    Mathematische Annalen, 2022, 383 : 809 - 836
  • [33] HIGHER FANO MANIFOLDS
    Araujo, Carolina
    Beheshti, Roya
    Castravet, Ana-maria
    Jabbusch, Kelly
    Makarova, Svetlana
    Mazzon, Enrica
    Taylor, Libby
    Viswanathan, Nivedita
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 64 (01): : 103 - 125
  • [34] INVARIANTS OF FANO VARIETIES IN FAMILIES
    Gounelas, Frank
    Javanpeykar, Ariyan
    MOSCOW MATHEMATICAL JOURNAL, 2018, 18 (02) : 305 - 319
  • [35] Codimension one Fano distributions on Fano manifolds
    Araujo, Carolina
    Correa, Mauricio
    Massarenti, Alex
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (05)
  • [36] Generalized Lazarsfeld Mukai bundles and a conjecture of Donagi and Morrison
    Lelli-Chiesa, Margherita
    ADVANCES IN MATHEMATICS, 2015, 268 : 529 - 563
  • [37] Central Weyl involutions on Fano–Mukai fourfolds of genus 10
    Mikhail Zaidenberg
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3277 - 3303
  • [38] Fano-Mukai fourfolds of genus 10 and their automorphism groups
    Prokhorov, Yuri
    Zaidenberg, Mikhail
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (02) : 561 - 572
  • [39] Generalizing the Mukai Conjecture to the symplectic category and the Kostant game
    Castro, Alexander Caviedes
    Pabiniak, Milena
    Sabatini, Silvia
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2023, 19 (04) : 1803 - 1837
  • [40] Codimension 1 Mukai foliations on complex projective manifolds
    Araujo, Carolina
    Druel, Stephane
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 727 : 191 - 246