Inversion formula of Dirichlet polynomials and the approximate functional equation of Dirichlet's L-functions

被引:0
|
作者
Wei Wang
机构
[1] Department of Mathematics,
[2] Jinan 250 100,undefined
[3] P.R. China,undefined
[4] Current address: (c/o Prof. Dr. S.J. Patterson),undefined
[5] Mathematisches Institut,undefined
[6] Universität Göttingen,undefined
[7] Bunsenstr. 3-5,undefined
[8] D-37073 Göttingen,undefined
[9] Germany,undefined
来源
Archiv der Mathematik | 1997年 / 69卷
关键词
Error Term; Functional Equation; Inversion Formula; Critical Line; Dirichlet Polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we prove an inversion formula for Dirichlet polynomials involving a non-principal character. By using Heath-Brown's upper-bound for Dirichlet's L-functions, we are able to obtain a non-trivial upper-bound for the error term in the q aspect. As an application we obtain an approximate functional equation for Dirichlet's L-functions to the right of the critical line with a sharp error term.
引用
收藏
页码:305 / 312
页数:7
相关论文
共 50 条
  • [31] ON ZEROS OF DIRICHLET L-FUNCTIONS
    CHEN, JG
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1986, 29 (09): : 897 - 913
  • [32] Nonvanishing of Dirichlet L-functions
    Khan, Rizwanur
    Ngo, Hieu T.
    ALGEBRA & NUMBER THEORY, 2016, 10 (10) : 2081 - 2091
  • [33] ZEROS OF DIRICHLET L-FUNCTIONS
    BALASUBRAMANIAN, R
    MURTY, VK
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1992, 25 (05): : 567 - 615
  • [34] A functional relation for L-functions of graphs equivalent to the Riemann Hypothesis for Dirichlet L-functions
    Friedli, Fabien
    JOURNAL OF NUMBER THEORY, 2016, 169 : 342 - 352
  • [35] A new mean-value result for Dirichlet L-functions and polynomials
    Harman, G
    Watt, N
    Wong, K
    QUARTERLY JOURNAL OF MATHEMATICS, 2004, 55 : 307 - 324
  • [36] SIEGEL'S MASS FORMULA AND AVERAGES OF DIRICHLET L-FUNCTIONS OVER FUNCTION FIELDS
    Maciak, Piotr
    Morales, Jorge
    ENSEIGNEMENT MATHEMATIQUE, 2011, 57 (3-4): : 393 - 422
  • [37] Wide moments of L-functions II: dirichlet L-functions
    Nordentoft, Asbjorn Christian
    QUARTERLY JOURNAL OF MATHEMATICS, 2023, 74 (01): : 365 - 387
  • [38] A note on Linnik’s approach to the Dirichlet L-functions
    J. Kaczorowski
    A. Perelli
    Proceedings of the Steklov Institute of Mathematics, 2017, 296 : 115 - 124
  • [39] On the logarithmic derivatives of Dirichlet L-functions at s=1
    Ihara, Yasutaka
    Murty, V. Kumar
    Shimura, Mahoro
    ACTA ARITHMETICA, 2009, 137 (03) : 253 - 276
  • [40] On the Mean Square Value of Dirichlet’s L-functions
    张文鹏
    数学进展, 1990, (04) : 502 - 504