Dynamic proper colorings of a graph

被引:0
|
作者
Karpov D.V. [1 ]
机构
[1] St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg
关键词
Color; Russia; Connected Graph; Complete Graph; Mathematical Institute;
D O I
10.1007/s10958-011-0612-3
中图分类号
学科分类号
摘要
A subdivision of complete graph Kn is any graph that can be obtained from Kn by replacing edges of Kn by chains of two edges (every such chain adds to the graph a new vertex of degree 2). Let G be a connected graph with maximal vertex degree d, d ≥ 8. We prove that there is a proper dynamic vertex coloring of G with d colors iff G is distinct from Kd+1 and its subdivisions. Bibliography: 7 titles. © 2011 Springer Science+Business Media, Inc.
引用
收藏
页码:601 / 615
页数:14
相关论文
共 50 条
  • [31] Acyclic Colorings of Graph Subdivisions
    Mondal, Debajyoti
    Nishat, Rahnuma Islam
    Whitesides, Sue
    Rahman, Md Saidur
    COMBINATORIAL ALGORITHMS, 2011, 7056 : 247 - +
  • [32] EVEN EDGE COLORINGS OF A GRAPH
    ACHARYA, BD
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 35 (01) : 78 - 79
  • [33] EVEN EDGE COLORINGS OF A GRAPH
    ALON, N
    EGAWA, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (01) : 93 - 94
  • [34] FIBONACCI IDENTITIES AND GRAPH COLORINGS
    Hillar, Christopher J.
    Windfeldt, Troels
    FIBONACCI QUARTERLY, 2008, 46-47 (03): : 220 - 224
  • [35] On the maximum number of colorings of a graph
    Erey, Aysel
    JOURNAL OF COMBINATORICS, 2018, 9 (03)
  • [36] On minimum entropy graph colorings
    Cardinal, J
    Fiorini, S
    Van Assche, G
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 43 - 43
  • [37] The complexity of generalized graph colorings
    Brown, JI
    DISCRETE APPLIED MATHEMATICS, 1996, 69 (03) : 257 - 270
  • [38] POLYNOMIAL GRAPH-COLORINGS
    GUTJAHR, W
    WELZL, E
    WOEGINGER, G
    DISCRETE APPLIED MATHEMATICS, 1992, 35 (01) : 29 - 45
  • [39] Zeons, Orthozeons, and Graph Colorings
    Staples, G. Stacey
    Stellhorn, Tiffany
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1825 - 1845
  • [40] Counting Colorings of a Regular Graph
    Galvin, David
    GRAPHS AND COMBINATORICS, 2015, 31 (03) : 629 - 638