A profinite group is said to be just infinite if each of its proper quotients is finite. We address the question which profinite groups admit just infinite quotients. It is proved that any profinite group whose order (as a supernatural number) is divisible only by finitely many primes admits just infinite quotients. It is shown that if a profinite group G possesses the property in question then so does every open subgroup and every finite extension of G.