A distinct and reproducible teleconnection pattern over North America during extreme El Niño events

被引:0
|
作者
Margot Beniche
Jérôme Vialard
Matthieu Lengaigne
Aurore Voldoire
Gangiredla Srinivas
Nicholas M. J. Hall
机构
[1] CNRS/CNES/IRD/Université de Toulouse,LEGOS
[2] CNRS/IRD/MNHN/Sorbonne Université,LOCEAN
[3] CNRS/IFREMER/IRD/Université de Montpellier,IPSL
[4] Météo-France/CNRS/Université de Toulouse,MARBEC
[5] CSIR-National Institute of Oceanography,CNRM
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
El Niño-Southern Oscillation (ENSO) teleconnections are an important predictability source for extratropical seasonal climate forecasts. Previous studies suggest that the ENSO teleconnection pattern depends on the ENSO phase (El Niño vs. La Niña) and/or Sea Surface Temperature (SST) pattern (central Pacific vs. eastern Pacific El Niño events). Observations and ensemble simulations with the CNRM-CM6.1 atmospheric general circulation model indicate that only extreme El Niño events (e.g. 1982–1983, 1997–1998, 2015–2016) display a statistically significant eastward shift relative to the well-known Pacific-North American teleconnection pattern that occurs during both central and eastern Pacific moderate El Niño or during La Niña. This specific teleconnection pattern emerges when equatorial SST anomalies are both eastward-shifted and sufficiently large to exceed the deep atmospheric convection threshold over most of the eastern Pacific, resulting in a basin-wide reorganization of tropospheric heat sources. It yields> 0.5 std wet conditions over Western United States (74% likelihood) as well as> 0.5 std warm anomalies over Canada and the Northern United States (71% likelihood), with more consistency across events and ensemble members than for any other El Niño or La Niña type. These findings hold important implications for the seasonal forecasting of El Niño’s impacts on the North American climate.
引用
收藏
相关论文
共 50 条
  • [21] Extreme stratospheric wave activity as harbingers of cold events over North America
    Ding, Xiuyuan
    Chen, Gang
    Zhang, Pengfei
    Domeisen, Daniela I. V.
    Orbe, Clara
    COMMUNICATIONS EARTH & ENVIRONMENT, 2023, 4 (01):
  • [22] The relationships between El Niño Southern Oscillation and extreme storm events in Korea
    Minkyu Park
    Minha Choi
    Environmental Earth Sciences, 2015, 74 : 351 - 362
  • [23] The variation in tropical cyclone genesis over the western North Pacific during the El Niño summers
    Ling, Sining
    Lu, Riyu
    Cao, Jie
    CLIMATE DYNAMICS, 2025, 63 (01)
  • [24] Tropical cyclones over north Indian Ocean during El-Niño Modoki years
    K. G. Sumesh
    M. R. Ramesh Kumar
    Natural Hazards, 2013, 68 : 1057 - 1074
  • [25] Interdecadal modulation of El Niño–tropical North Atlantic teleconnection by the Atlantic multi-decadal oscillation
    Jae-Heung Park
    Tim Li
    Climate Dynamics, 2019, 52 : 5345 - 5360
  • [26] Extreme Aerosol Events Over Eastern North America: 1. Characterizing and Simulating Historical Events
    Guo, Yafang
    Crippa, Paola
    Thota, Abhinav
    Pryor, Sara C.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (10)
  • [27] Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events
    Hengyi Weng
    Swadhin K. Behera
    Toshio Yamagata
    Climate Dynamics, 2009, 32 : 663 - 674
  • [28] Diverse NPMM conditions deviate the 2023/24 El Niño from the 1997/1998 and 2015/2016 extreme El Niño events
    Lin, Yong-Fu
    Chen, Mengyan
    Liu, Lingling
    Zheng, Fei
    Ding, Ruiqiang
    Wang, Xin
    Wu, Chau-Ron
    Lo, Min-Hui
    Hsu, Huang-Hsiung
    Chen, Jiepeng
    Lee, Ting-Hui
    Yu, Jin-Yi
    NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2025, 8 (01):
  • [29] Effects of the Pacific-Japan teleconnection pattern on tropical cyclone activity and extreme precipitation events over the Korean peninsula
    Kim, Jong-Suk
    Li, Richard Cheuk-Yin
    Zhou, Wen
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [30] The [OI] 557.7-nm airglow emission during El niño/La niña extreme events in solar cycles 23–24
    Mikhalev A.V.
    Atmospheric and Oceanic Optics, 2018, 31 (2) : 197 - 200