Logarithmic convexity of fixed points of stochastic kernel operators

被引:0
|
作者
Aljoša Peperko
机构
[1] University of Ljubljana,Faculty of Mechanical Engineering
[2] Institute of Mathematics,undefined
[3] Physics and Mechanics,undefined
来源
Positivity | 2019年 / 23卷
关键词
Positive kernel operators; Stochastic operators; Eigenfunctions; Non-negative matrices; Mathematical economics; 47B34; 47B65; 15B51; 91B02; 47A10; 15B48; 15A42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove results on logarithmic convexity of fixed points of stochastic kernel operators. These results are expected to play a key role in the economic application to strategic market games.
引用
收藏
页码:367 / 377
页数:10
相关论文
共 50 条
  • [21] STOCHASTIC OPERATORS AND EXTREME POINTS
    Hadwin, Don
    Nordgren, Eric
    Radjavi, Heydar
    OPERATORS AND MATRICES, 2009, 3 (02): : 227 - 233
  • [22] LOGARITHMIC CONVEXITY
    KLINGER, A
    SIAM REVIEW, 1968, 10 (02) : 271 - &
  • [23] Stochastic fixed points for the maximum
    Jagers, P
    Rösler, U
    MATHEMATICS AND COMPUTER SCIENCE III: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2004, : 325 - 338
  • [24] Fixed points and coincidence points of discontinuous monotone operators
    Chen, YZ
    PROCEEDINGS OF DYNAMIC SYSTEMS AND APPLICATIONS, VOL 4, 2004, : 58 - 62
  • [25] Positive fixed points for nonlinear operators
    Li, K
    Liang, J
    Xiao, TJ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (10-12) : 1569 - 1578
  • [26] Fixed Points for Discontinuous Monotone Operators
    Cui, Yujun
    Zhang, Xingqiu
    FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [27] FIXED POINTS OF MEAN SECTION OPERATORS
    Brauner, Leo
    Ortega-moreno, Oscar
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 378 (01) : 159 - 199
  • [28] Periodic fixed points of random operators
    Beg, Ismat
    Abbas, Mujahid
    Azam, Akbar
    ANNALES MATHEMATICAE ET INFORMATICAE, 2010, 37 : 39 - 49
  • [29] Fixed points of composition operators II
    Epstein, Henri
    NONLINEARITY, 1989, 2 (02) : 305 - 310
  • [30] FIXED POINTS OF A CLASS OF UNITARY OPERATORS
    Das, Namita
    Behera, Jitendra Kumar
    ADVANCES IN OPERATOR THEORY, 2018, 3 (03): : 538 - 550