This work focuses on the operational and safety issues associated with karst voids in large opening underground mines. Issues include water inrush, structural instability, and engineering uncertainty in these environments. Coupled with the fracturing prevalent in folded sedimentary rocks, karst voids are complex and challenging ground-control risks. Traditional methods of predicting karst void locations, such as probe drilling, are impeded by the inconsistent spatial distribution and variable sizes of the features as reported by Li et al. (J Rock Mechan Geotech Eng:232–242, 2010) and Hassan et al. (Procedia Chem 19:737–742, 2016). Ground-penetrating radar (GPR) is a geophysical technique that transmits radio waves into a medium and subsequently detects reflected waves via a receiver. The travel time and energy of received signals are then processed and interpreted. The difference in conductivity and dielectric permittivity between limestone and open karst cavities causes strong reflections. GPR is frequently used as a geophysical surveying technique in several industries; however, there is a lack of published research on underground mining GPR applications as reported by Zhao et al. (2015a; Geophys J Int:62–71, 2015b) and Eskelinen and Pellinen (Constr Build Mater:888–898, 2018). The purpose of this work is to demonstrate the use of GPR in an underground stone mine and to discuss the importance of karst void detection ahead of mining.